Detecting Abnormal Speed of Marine Robots using Controlled Lagrangian Particle Tracking Methods

Sungjin Cho, Fumin Zhang, C. Edwards
{"title":"Detecting Abnormal Speed of Marine Robots using Controlled Lagrangian Particle Tracking Methods","authors":"Sungjin Cho, Fumin Zhang, C. Edwards","doi":"10.1145/3148675.3148714","DOIUrl":null,"url":null,"abstract":"The ability to detect abnormal conditions is of great importance for the survivability of marine robots. However, false alarms can occur and may lead to unnecessary interruption of robotic missions. This paper presents recent results on anomaly detection, which may reduce the rate of false alarms in the framework of controlled Lagrangian particle tracking (CLPT), a theoretical tool that analyzes interactions between robot motion and ocean flow. Adaptive learning algorithms extract vehicle speed as an indicator of anomalies from trajectory information using a predicted trajectory to identify when abnormal motion is detectable. The methods are verified by simulation results.","PeriodicalId":215853,"journal":{"name":"Proceedings of the 12th International Conference on Underwater Networks & Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Underwater Networks & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3148675.3148714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to detect abnormal conditions is of great importance for the survivability of marine robots. However, false alarms can occur and may lead to unnecessary interruption of robotic missions. This paper presents recent results on anomaly detection, which may reduce the rate of false alarms in the framework of controlled Lagrangian particle tracking (CLPT), a theoretical tool that analyzes interactions between robot motion and ocean flow. Adaptive learning algorithms extract vehicle speed as an indicator of anomalies from trajectory information using a predicted trajectory to identify when abnormal motion is detectable. The methods are verified by simulation results.
基于可控拉格朗日粒子跟踪方法的船舶机器人异常速度检测
异常状态的检测能力对海洋机器人的生存能力至关重要。然而,假警报可能会发生,并可能导致机器人任务的不必要中断。本文介绍了在受控拉格朗日粒子跟踪(CLPT)框架下的异常检测的最新成果,该框架可以降低误报率,这是一种分析机器人运动与海洋流动之间相互作用的理论工具。自适应学习算法利用预测轨迹,从轨迹信息中提取车速作为异常指标,识别异常运动。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信