Unsupervised Deep Embedded Hashing for Large-Scale Image Retrieval

Huanmin Wang
{"title":"Unsupervised Deep Embedded Hashing for Large-Scale Image Retrieval","authors":"Huanmin Wang","doi":"10.1587/transfun.2020eal2056","DOIUrl":null,"url":null,"abstract":"Hashing methods have proven to be effective algorithm for image retrieval. However, learning discriminative hash codes is challenging for unsupervised models. In this paper, we propose a novel distinguishable image retrieval framework, named Unsupervised Deep Embedded Hashing (UDEH), to recursively learn discriminative clustering through soft clustering models and generate highly similar binary codes. We reduce the data dimension by auto-encoder and apply binary constraint loss to reduce quantization error. UDEH can be jointly optimized by standard stochastic gradient descent (SGD) in the embedd layer. We conducted a comprehensive experiment on two popular datasets. key words: hashing, unsupervised learning, deep learning","PeriodicalId":348826,"journal":{"name":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2020eal2056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hashing methods have proven to be effective algorithm for image retrieval. However, learning discriminative hash codes is challenging for unsupervised models. In this paper, we propose a novel distinguishable image retrieval framework, named Unsupervised Deep Embedded Hashing (UDEH), to recursively learn discriminative clustering through soft clustering models and generate highly similar binary codes. We reduce the data dimension by auto-encoder and apply binary constraint loss to reduce quantization error. UDEH can be jointly optimized by standard stochastic gradient descent (SGD) in the embedd layer. We conducted a comprehensive experiment on two popular datasets. key words: hashing, unsupervised learning, deep learning
大规模图像检索的无监督深度嵌入哈希
哈希算法已被证明是一种有效的图像检索算法。然而,学习判别哈希码对于无监督模型来说是一个挑战。在本文中,我们提出了一种新的可区分图像检索框架,称为无监督深度嵌入哈希(UDEH),通过软聚类模型递归学习判别聚类并生成高度相似的二进制码。采用自编码器对数据进行降维,并采用二值约束损失来减小量化误差。UDEH可以通过标准随机梯度下降(SGD)在嵌入层中进行联合优化。我们在两个流行的数据集上进行了全面的实验。关键词:哈希,无监督学习,深度学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信