M. Yogeesh, Hsiao-Yu Chang, Wei Li, S. Rahimi, A. Rai, A. Sanne, R. Ghosh, S. Banerjee, D. Akinwande
{"title":"Towards wafer scale monolayer MoS2 based flexible low-power RF electronics for IoT systems","authors":"M. Yogeesh, Hsiao-Yu Chang, Wei Li, S. Rahimi, A. Rai, A. Sanne, R. Ghosh, S. Banerjee, D. Akinwande","doi":"10.1109/DRC.2016.7548483","DOIUrl":null,"url":null,"abstract":"There is a growing interest in the design of novel flexible electronics for future internet of things (IoT) systems [1]. IoT requires design of low power RF electronics operating at GHz frequency range. Molybdenum disulphide (MoS2) is the prototypical transitional metal dichalcogenide (TMD) affording a large semiconducting bandgap (1.8eV), high saturation velocity, good mechanical strength, high mobility (> 50cm2/Vs), high on/off ratio (> 106), good current saturation and GHz RF performance [2]. In this work, we demonstrate wafer scale monolayer MoS2 based flexible RF nanoelectronics that can be used for low power nanoelectronics and flexible IoT systems.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"R-29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 74th Annual Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2016.7548483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
There is a growing interest in the design of novel flexible electronics for future internet of things (IoT) systems [1]. IoT requires design of low power RF electronics operating at GHz frequency range. Molybdenum disulphide (MoS2) is the prototypical transitional metal dichalcogenide (TMD) affording a large semiconducting bandgap (1.8eV), high saturation velocity, good mechanical strength, high mobility (> 50cm2/Vs), high on/off ratio (> 106), good current saturation and GHz RF performance [2]. In this work, we demonstrate wafer scale monolayer MoS2 based flexible RF nanoelectronics that can be used for low power nanoelectronics and flexible IoT systems.