{"title":"Longitudinal control law design for fixed-wing UAV based on multi-model technique","authors":"Desheng Kong, Qingbo Geng, Qiong Hu, Jianbo Shao","doi":"10.1109/ICICIP.2014.7010312","DOIUrl":null,"url":null,"abstract":"Multi-model technique is studied and adopted for the control design for longitudinal dynamics of fixed-wing unmanned aerial vehicle (UAV) in the paper. A linear model set is built up at a number of operating points which are characterized by the different values of flight velocity and altitude, since the aerodynamics is greatly influenced by the two flight states, and a corresponding controller set for the linearized models is constructed, including discrete-time linear quadratic regulator (DLQR) as the inner loop controller for the velocity and pitch angle control and a PID controller for the altitude tracking and keeping. The switching strategy within the multi-model control scheme is put forward according to the square root of velocity and altitude. Finally, the simulation validates the efficiency of the proposed method, with the F-16 model as the controlled plant.","PeriodicalId":408041,"journal":{"name":"Fifth International Conference on Intelligent Control and Information Processing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2014.7010312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Multi-model technique is studied and adopted for the control design for longitudinal dynamics of fixed-wing unmanned aerial vehicle (UAV) in the paper. A linear model set is built up at a number of operating points which are characterized by the different values of flight velocity and altitude, since the aerodynamics is greatly influenced by the two flight states, and a corresponding controller set for the linearized models is constructed, including discrete-time linear quadratic regulator (DLQR) as the inner loop controller for the velocity and pitch angle control and a PID controller for the altitude tracking and keeping. The switching strategy within the multi-model control scheme is put forward according to the square root of velocity and altitude. Finally, the simulation validates the efficiency of the proposed method, with the F-16 model as the controlled plant.