An adaptive state space segmentation for reinforcement learning using fuzzy-ART neural network

T. Kamio, S. Soga, H. Fujisaka, K. Mitsubori
{"title":"An adaptive state space segmentation for reinforcement learning using fuzzy-ART neural network","authors":"T. Kamio, S. Soga, H. Fujisaka, K. Mitsubori","doi":"10.1109/MWSCAS.2004.1354305","DOIUrl":null,"url":null,"abstract":"Reinforcement learning has been applied to a variety of physical control tasks. They include many purposive tasks with continuous state variables and discrete-valued actions. The state space segmentation is one of the most important problems for such tasks. However, if they are not given serious damages by \"a state-action deviation problem\", the conventional methods are unsuitable for them in terms of the cost-performance and the simplicity of the algorithm. To overcome this problem, we propose a new adaptive state space segmentation method based on fuzzy-ART neural network.","PeriodicalId":185817,"journal":{"name":"The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2004.1354305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Reinforcement learning has been applied to a variety of physical control tasks. They include many purposive tasks with continuous state variables and discrete-valued actions. The state space segmentation is one of the most important problems for such tasks. However, if they are not given serious damages by "a state-action deviation problem", the conventional methods are unsuitable for them in terms of the cost-performance and the simplicity of the algorithm. To overcome this problem, we propose a new adaptive state space segmentation method based on fuzzy-ART neural network.
基于模糊- art神经网络的强化学习自适应状态空间分割
强化学习已被应用于各种物理控制任务。它们包括许多具有连续状态变量和离散值动作的目标任务。状态空间分割是这类任务的关键问题之一。但是,如果它们没有受到“状态-行为偏差问题”的严重损害,那么传统的方法在性价比和算法的简单性方面就不适合它们。为了克服这一问题,提出了一种基于fuzzy-ART神经网络的自适应状态空间分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信