{"title":"Learning-Based Characterization Models for Quality Assurance of Emerging Memory Technologies","authors":"Xhesila Xhafa, P. Girard, A. Virazel","doi":"10.1109/ETS56758.2023.10174202","DOIUrl":null,"url":null,"abstract":"The shrinking of technology nodes has led to high-density memories containing large amounts of transistors which are prone to defects and reliability issues. Their test is generally based on the use of well-known March algorithms targeting Functional Fault Models (FFMs). This Ph.D. thesis aims to introduce a novel approach for advanced and emerging memory testing that relies on the Cell-Aware (CA) methodology to further improve the yield of System on Chips (SoCs).","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10174202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The shrinking of technology nodes has led to high-density memories containing large amounts of transistors which are prone to defects and reliability issues. Their test is generally based on the use of well-known March algorithms targeting Functional Fault Models (FFMs). This Ph.D. thesis aims to introduce a novel approach for advanced and emerging memory testing that relies on the Cell-Aware (CA) methodology to further improve the yield of System on Chips (SoCs).