Community evolution in a scientific collaboration network

M. V. Nguyen, M. Kirley, R. García-Flores
{"title":"Community evolution in a scientific collaboration network","authors":"M. V. Nguyen, M. Kirley, R. García-Flores","doi":"10.1109/CEC.2012.6256434","DOIUrl":null,"url":null,"abstract":"A community in a network is a set of nodes with a larger density of intra-community links than inter-community links. Tracking communities in a network via a community life-cycle model can reveal patterns on how the network evolve. Previous models of community life-cycle provided a first step towards analyzing how communities change over time. We introduce an extended life-cycle model having the minimum community size as a parameter. Our model is capable of uncovering anomaly in community evolution and dynamics such as communities with stable or stagnant size. We apply our model to track, and uncover trends in, the evolution of communities of genetic programming researchers. The lifespan of a community measures how long it has lived. The distribution of lifespan in the network of genetic programming researchers is shown to be modeled as an exponential-law, a phenomenon yet to be explored in other empirical networks. We show that our parameter of minimum community size can significantly affect how communities grow over time. The parameter is fine-tuned to detect anomaly in community evolution.","PeriodicalId":376837,"journal":{"name":"2012 IEEE Congress on Evolutionary Computation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2012.6256434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A community in a network is a set of nodes with a larger density of intra-community links than inter-community links. Tracking communities in a network via a community life-cycle model can reveal patterns on how the network evolve. Previous models of community life-cycle provided a first step towards analyzing how communities change over time. We introduce an extended life-cycle model having the minimum community size as a parameter. Our model is capable of uncovering anomaly in community evolution and dynamics such as communities with stable or stagnant size. We apply our model to track, and uncover trends in, the evolution of communities of genetic programming researchers. The lifespan of a community measures how long it has lived. The distribution of lifespan in the network of genetic programming researchers is shown to be modeled as an exponential-law, a phenomenon yet to be explored in other empirical networks. We show that our parameter of minimum community size can significantly affect how communities grow over time. The parameter is fine-tuned to detect anomaly in community evolution.
科学合作网络中的社区进化
网络中的社区是一组节点,其社区内链路的密度大于社区间链路的密度。通过社区生命周期模型跟踪网络中的社区可以揭示网络如何演变的模式。以前的社区生命周期模型为分析社区如何随时间变化提供了第一步。我们引入了一个以最小群落规模为参数的扩展生命周期模型。该模型能够揭示群落演化和动态中的异常现象,如群落规模稳定或停滞。我们应用我们的模型来跟踪和揭示遗传编程研究人员群体的进化趋势。一个社区的寿命衡量的是它存在了多长时间。遗传规划研究人员网络中的寿命分布显示为指数律模型,这一现象尚未在其他经验网络中探索。我们表明,我们的最小社区规模参数可以显著影响社区随着时间的推移如何增长。对该参数进行微调,以检测群落演化中的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信