Action trajectory reconstruction from inertial sensor measurements

S. Suvorova, T. Vaithianathan, T. Caelli
{"title":"Action trajectory reconstruction from inertial sensor measurements","authors":"S. Suvorova, T. Vaithianathan, T. Caelli","doi":"10.1109/ISSPA.2012.6310700","DOIUrl":null,"url":null,"abstract":"Inertial sensors, such as accelerometers and gyroscopes, are rarely used by themselves to compute velocity and position as each requires the integration of very noisy data. The variance and bias in the resulting position and velocity estimates grow unbounded in time. This paper proposes a solution to provide a de-biased and de-noised estimation of position and velocity of human actions from accelerometer measurements. The method uses a continuous wavelet transform applied to the measurements recursively to provide reliable action trajectory reconstruction. The results are presented from experiments performed with a MEMS accelerometer and gyroscope.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Inertial sensors, such as accelerometers and gyroscopes, are rarely used by themselves to compute velocity and position as each requires the integration of very noisy data. The variance and bias in the resulting position and velocity estimates grow unbounded in time. This paper proposes a solution to provide a de-biased and de-noised estimation of position and velocity of human actions from accelerometer measurements. The method uses a continuous wavelet transform applied to the measurements recursively to provide reliable action trajectory reconstruction. The results are presented from experiments performed with a MEMS accelerometer and gyroscope.
从惯性传感器测量中重建动作轨迹
惯性传感器,如加速度计和陀螺仪,很少单独用于计算速度和位置,因为每个传感器都需要集成非常嘈杂的数据。由此产生的位置和速度估计的方差和偏差随着时间的推移而无界增长。本文提出了一种从加速度计测量中对人体动作的位置和速度进行去偏和去噪估计的方法。该方法采用连续小波变换递归地对测量结果进行处理,提供可靠的动作轨迹重建。本文给出了用MEMS加速度计和陀螺仪进行的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信