N. Moonen, M. Gagic, F. Buesink, J. Ferreira, F. Leferink
{"title":"Harmonic cancellation in a novel multilevel converter topology for the future smart grid","authors":"N. Moonen, M. Gagic, F. Buesink, J. Ferreira, F. Leferink","doi":"10.1109/ISEMC.2017.8077939","DOIUrl":null,"url":null,"abstract":"Increased switching speed of semiconductors are reducing losses, but increasing emissions. EMC compliance becomes increasingly difficult in power electronics. A reactive attitude is unwanted, often due to the possible increased costs of solutions. Converter topologies that can inherently reduce emissions are preferred This paper demonstrates that harmonic cancellation is possible in a novel topology for DC/DC converter applications referred to as the Multi-frequency, Multi-level Modular converter (M3C). The emission spectrum dependency on control parameters is investigated numerically, while measurements on a M3C demonstrator are implemented to verify the occurrence of harmonic cancellation.","PeriodicalId":426924,"journal":{"name":"2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2017.8077939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Increased switching speed of semiconductors are reducing losses, but increasing emissions. EMC compliance becomes increasingly difficult in power electronics. A reactive attitude is unwanted, often due to the possible increased costs of solutions. Converter topologies that can inherently reduce emissions are preferred This paper demonstrates that harmonic cancellation is possible in a novel topology for DC/DC converter applications referred to as the Multi-frequency, Multi-level Modular converter (M3C). The emission spectrum dependency on control parameters is investigated numerically, while measurements on a M3C demonstrator are implemented to verify the occurrence of harmonic cancellation.