Noise robust exemplar matching with coupled dictionaries for single-channel speech enhancement

Emre Yilmaz, Deepak Baby, H. V. hamme
{"title":"Noise robust exemplar matching with coupled dictionaries for single-channel speech enhancement","authors":"Emre Yilmaz, Deepak Baby, H. V. hamme","doi":"10.1109/EUSIPCO.2015.7362508","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a single-channel speech enhancement system based on the noise robust exemplar matching (N-REM) framework using coupled dictionaries. N-REM approximates noisy speech segments as a sparse linear combination of speech and noise exemplars that are stored in multiple dictionaries based on their length and associated speech unit. The dictionaries providing the best approximation of the noisy mixtures are used to estimate the speech component. We further employ a coupled dictionary approach that performs the approximation in the lower dimensional mel domain to benefit from the reduced computational load and better generalization, and the enhancement in the short-time Fourier transform (STFT) domain for higher spectral resolution. The proposed enhancement system is shown to have superior performance compared to the exemplar-based sparse representations approach using fixed-length exemplars in a single overcomplete dictionary.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a single-channel speech enhancement system based on the noise robust exemplar matching (N-REM) framework using coupled dictionaries. N-REM approximates noisy speech segments as a sparse linear combination of speech and noise exemplars that are stored in multiple dictionaries based on their length and associated speech unit. The dictionaries providing the best approximation of the noisy mixtures are used to estimate the speech component. We further employ a coupled dictionary approach that performs the approximation in the lower dimensional mel domain to benefit from the reduced computational load and better generalization, and the enhancement in the short-time Fourier transform (STFT) domain for higher spectral resolution. The proposed enhancement system is shown to have superior performance compared to the exemplar-based sparse representations approach using fixed-length exemplars in a single overcomplete dictionary.
基于耦合字典的单通道语音增强噪声鲁棒样本匹配
本文提出了一种基于噪声鲁棒样例匹配(N-REM)框架的单通道语音增强系统。N-REM将有噪声的语音片段近似为基于其长度和相关语音单位存储在多个字典中的语音和噪声样本的稀疏线性组合。字典提供了噪声混合的最佳近似值,用于估计语音成分。我们进一步采用了一种耦合字典方法,该方法在较低维mel域中执行近似,以减少计算负荷和更好的泛化,并在短时傅里叶变换(STFT)域中增强,以获得更高的光谱分辨率。与在单个过完备字典中使用固定长度样例的基于样例的稀疏表示方法相比,所提出的增强系统具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信