Impact of Thin-oxide Gate on the On-Resistance of HV-PNP Under ESD Stress

M. Monishmurali, N. K. Kranthi, G. Boselli, M. Shrivastava
{"title":"Impact of Thin-oxide Gate on the On-Resistance of HV-PNP Under ESD Stress","authors":"M. Monishmurali, N. K. Kranthi, G. Boselli, M. Shrivastava","doi":"10.1109/IRPS48203.2023.10117638","DOIUrl":null,"url":null,"abstract":"Physical insights into the impact of the thin-oxide polysilicon gate on the on-resistance of DeMOS-based HV-PNP are developed using detailed TCAD simulation. Turn-on and eventual failure mechanisms in HV-PNP are discussed. The impact of thin-oxide polysilicon placed over the N-Well and P-Well regions is investigated separately. The physics of regenerative bipolar degradation and its effect of dynamic on-resistance is understood as a function of thin-oxide placement. Furthermore, floating the thin-oxide gate mitigated regenerative bipolar degradation while having a faster lateral PNP trigger, resulting in the best case of on-resistance at all current levels. The insights developed in this work help to design compact high-voltage PNPs.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10117638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Physical insights into the impact of the thin-oxide polysilicon gate on the on-resistance of DeMOS-based HV-PNP are developed using detailed TCAD simulation. Turn-on and eventual failure mechanisms in HV-PNP are discussed. The impact of thin-oxide polysilicon placed over the N-Well and P-Well regions is investigated separately. The physics of regenerative bipolar degradation and its effect of dynamic on-resistance is understood as a function of thin-oxide placement. Furthermore, floating the thin-oxide gate mitigated regenerative bipolar degradation while having a faster lateral PNP trigger, resulting in the best case of on-resistance at all current levels. The insights developed in this work help to design compact high-voltage PNPs.
静电放电下薄氧化栅对HV-PNP导通电阻的影响
利用详细的TCAD模拟,深入研究了薄氧化多晶硅栅极对基于demos的HV-PNP导通电阻的影响。讨论了HV-PNP的导通和最终失效机制。分别研究了放置在n阱和p阱上的薄氧化物多晶硅的影响。再生双极退化的物理性质及其动态导通电阻的影响被理解为薄氧化物放置的函数。此外,浮动的薄氧化栅极减轻了再生双极退化,同时具有更快的横向PNP触发,从而在所有电流水平上产生最佳导通电阻。在这项工作中发展的见解有助于设计紧凑型高压pnp。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信