Nonlinear filtering with multiple packet dropouts

Jinguang Chen, Jiancheng Li, Lili Ma
{"title":"Nonlinear filtering with multiple packet dropouts","authors":"Jinguang Chen, Jiancheng Li, Lili Ma","doi":"10.1109/IASP.2010.5476156","DOIUrl":null,"url":null,"abstract":"This paper considers the nonlinear system filtering with packet dropouts. We assume that the packet arrived rate is known in advance but the sequence of packet dropouts is unknown. At first, we use the probability-weighted method to achieve a pseudo measurement sequence, and every pseudo measurement is the weighted value of the measurements acquired at the current time step and the prior time step. Some classical nonlinear filtering methods can be used via the pseudo measurement sequence and the dynamic equation of the system, and then the pseudo measurement unscented Kalman filter (PM_UKF) and the pseudo measurement particle filter (PM_PF) are given. This pseudo measurement sequence can be also used in the linear system, and its time complexity is lower than that of Sun's optimal filter at this time. Simulation results show the effectiveness of the proposed algorithms.","PeriodicalId":223866,"journal":{"name":"2010 International Conference on Image Analysis and Signal Processing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Image Analysis and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IASP.2010.5476156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper considers the nonlinear system filtering with packet dropouts. We assume that the packet arrived rate is known in advance but the sequence of packet dropouts is unknown. At first, we use the probability-weighted method to achieve a pseudo measurement sequence, and every pseudo measurement is the weighted value of the measurements acquired at the current time step and the prior time step. Some classical nonlinear filtering methods can be used via the pseudo measurement sequence and the dynamic equation of the system, and then the pseudo measurement unscented Kalman filter (PM_UKF) and the pseudo measurement particle filter (PM_PF) are given. This pseudo measurement sequence can be also used in the linear system, and its time complexity is lower than that of Sun's optimal filter at this time. Simulation results show the effectiveness of the proposed algorithms.
多包丢包非线性滤波
本文研究具有丢包的非线性系统滤波问题。我们假设数据包到达率是已知的,但数据包丢弃的顺序是未知的。首先,我们使用概率加权的方法得到一个伪测量序列,每个伪测量都是当前时间步长和前一时间步长获得的测量值的加权值。利用系统的伪测量序列和动态方程,采用经典的非线性滤波方法,给出了伪测量无气味卡尔曼滤波(PM_UKF)和伪测量粒子滤波(PM_PF)。该伪测量序列也可用于线性系统,且此时其时间复杂度低于Sun的最优滤波器。仿真结果表明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信