Multiobjective evolutionary flight planning of autonomous unmanned aerial vehicles for exploration and surveillance

S. Nesmachnow, Claudio J. Paz, J. Toutouh, Andrei Tchernykh
{"title":"Multiobjective evolutionary flight planning of autonomous unmanned aerial vehicles for exploration and surveillance","authors":"S. Nesmachnow, Claudio J. Paz, J. Toutouh, Andrei Tchernykh","doi":"10.47350/AICTS.2020.13","DOIUrl":null,"url":null,"abstract":"This article presents a multiobjective evolutionary approach for computing flight plans for a fleet of unmanned aerial vehicles to perform exploration and surveillance missions. The static off-line planning subproblem is addressed, which is useful to determine initial flight routes to maximize the explored area and the surveillance of points of interest in the zone. A specific flight planning solution is developed, to be applied in low-cost commercial Bebop 2. The experimental analysis is performed in realistic instances of the surveillance problem. Results indicate that the proposed multiobjective evolutionary algorithm is able to compute accurate flight plans, significantly outperforming a previous evolutionary method applying the linear aggregation approach.","PeriodicalId":395296,"journal":{"name":"International Workshop on Advanced Information and Computation Technologies and Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Advanced Information and Computation Technologies and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47350/AICTS.2020.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a multiobjective evolutionary approach for computing flight plans for a fleet of unmanned aerial vehicles to perform exploration and surveillance missions. The static off-line planning subproblem is addressed, which is useful to determine initial flight routes to maximize the explored area and the surveillance of points of interest in the zone. A specific flight planning solution is developed, to be applied in low-cost commercial Bebop 2. The experimental analysis is performed in realistic instances of the surveillance problem. Results indicate that the proposed multiobjective evolutionary algorithm is able to compute accurate flight plans, significantly outperforming a previous evolutionary method applying the linear aggregation approach.
自主无人侦察飞行器多目标演化飞行规划
本文提出了一种多目标进化方法,用于计算执行探测和监视任务的无人驾驶飞行器的飞行计划。解决了静态离线规划子问题,该子问题有助于确定初始飞行路线以最大化探索面积和监视区域内的兴趣点。开发了一个具体的飞行计划解决方案,应用于低成本的商业Bebop 2。在监控问题的实际实例中进行了实验分析。结果表明,所提出的多目标进化算法能够计算出精确的飞行计划,显著优于先前采用线性聚合方法的进化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信