Iterative capacity allocation and production flow estimation for scheduling semiconductor fabrication

Shi-Chung Chang, L. Lee, Lee-Sing Pang, Tien-Ying Chen, Yi-Chen Weng, Huei-Der Chiang, Dennis W. T. Dai
{"title":"Iterative capacity allocation and production flow estimation for scheduling semiconductor fabrication","authors":"Shi-Chung Chang, L. Lee, Lee-Sing Pang, Tien-Ying Chen, Yi-Chen Weng, Huei-Der Chiang, Dennis W. T. Dai","doi":"10.1109/IEMT.1995.526212","DOIUrl":null,"url":null,"abstract":"This paper presents an effective algorithm of determining daily production targets and the corresponding machine capacity allocation for semiconductor wafer fabrication. The algorithm adopts an iterative scheme and each iteration consists of two modules: the proportional Target Generation and Machine Allocation (TG&MA) and the Stage of Penetration Estimation Algorithm (SOPEA). In TG&MA, machine capacities are allocated to processing different types of products at various stages in proportion to their respective available workloads. With the capacity allocated to each product type, SOPEA then applies a recursive, deterministic queuing analysis to estimate the expected flow-in workload of a stage within a day. The flow-ins are fed into TG&MA for another iteration of capacity allocation. Field implementation of this algorithm has demonstrated significant effects on production move increase, cycle time reduction and line balancing.","PeriodicalId":123707,"journal":{"name":"Seventeenth IEEE/CPMT International Electronics Manufacturing Technology Symposium. 'Manufacturing Technologies - Present and Future'","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventeenth IEEE/CPMT International Electronics Manufacturing Technology Symposium. 'Manufacturing Technologies - Present and Future'","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.1995.526212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents an effective algorithm of determining daily production targets and the corresponding machine capacity allocation for semiconductor wafer fabrication. The algorithm adopts an iterative scheme and each iteration consists of two modules: the proportional Target Generation and Machine Allocation (TG&MA) and the Stage of Penetration Estimation Algorithm (SOPEA). In TG&MA, machine capacities are allocated to processing different types of products at various stages in proportion to their respective available workloads. With the capacity allocated to each product type, SOPEA then applies a recursive, deterministic queuing analysis to estimate the expected flow-in workload of a stage within a day. The flow-ins are fed into TG&MA for another iteration of capacity allocation. Field implementation of this algorithm has demonstrated significant effects on production move increase, cycle time reduction and line balancing.
半导体制造调度的迭代产能分配和生产流程估计
本文提出了一种确定半导体晶圆制造日生产目标和相应的机器容量分配的有效算法。该算法采用迭代算法,每次迭代包括两个模块:比例目标生成和机器分配(TG&MA)和阶段渗透估计算法(SOPEA)。在TG&MA中,机器的能力被分配到在不同阶段处理不同类型的产品,这与它们各自可用的工作负载成比例。将容量分配给每个产品类型后,SOPEA然后应用递归、确定性排队分析来估计一天内某个阶段的预期流入工作负载。流入被送入TG&MA进行另一次容量分配迭代。实际应用表明,该算法在提高产量、缩短生产周期、平衡生产线等方面效果显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信