Embedded deep neural networks: “The cost of everything and the value of nothing”

D. Moloney
{"title":"Embedded deep neural networks: “The cost of everything and the value of nothing”","authors":"D. Moloney","doi":"10.1109/HOTCHIPS.2016.7936219","DOIUrl":null,"url":null,"abstract":"•Deep Learning for Embedded is all about Inference •Standard Networks are designed to achieve high-accuracy •Embedded implementation on architectures such as Movidius VPU can achieve significant performance results at the network edge •Next challenge is to further optimise networks to maximise performance per Watt","PeriodicalId":363333,"journal":{"name":"2016 IEEE Hot Chips 28 Symposium (HCS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Hot Chips 28 Symposium (HCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOTCHIPS.2016.7936219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

•Deep Learning for Embedded is all about Inference •Standard Networks are designed to achieve high-accuracy •Embedded implementation on architectures such as Movidius VPU can achieve significant performance results at the network edge •Next challenge is to further optimise networks to maximise performance per Watt
嵌入式深度神经网络:“所有东西的成本和没有价值”
•嵌入式深度学习是关于推理的•标准网络旨在实现高精度•在诸如Movidius VPU等架构上的嵌入式实现可以在网络边缘实现显着的性能结果•下一个挑战是进一步优化网络以最大限度地提高每瓦特的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信