Hierarchically nested channels for fast squeezing interfaces with reduced thermal resistance [IC cooling applications]

T. Brunschwiler, U. Kloter, R. Linderman, H. Rothuizen, B. Michel
{"title":"Hierarchically nested channels for fast squeezing interfaces with reduced thermal resistance [IC cooling applications]","authors":"T. Brunschwiler, U. Kloter, R. Linderman, H. Rothuizen, B. Michel","doi":"10.1109/STHERM.2005.1412156","DOIUrl":null,"url":null,"abstract":"We report a simple method to improve bondline formation kinetics by means of a hierarchical set of channels patterned into one of the surfaces. These channel arrays are used to improve the gap squeezing and cooling of single and multiple flip chip electronic modules with highly viscous fluids and thermal pastes. They allow a fast formation of thin gaps or bond lines by reducing the pressure gradient in the thermal interface material as it moves in and out of the gap. Models describing the dynamics of Newtonian fluids in these \"hierarchically nested channel\" (HNC) interfaces combine squeeze flow and Hagen-Poiseuille theories. Rapid bond line formation is demonstrated for Newtonian fluids and selected particle-filled pastes. Modeling of particle-laden polymeric pastes includes Bingham and Hershel-Bulkley fluid properties. Bond line formation and thermal resistance is improved particularly for high viscosity-high thermal conductivity interface materials created from higher volumetric particle loadings or for thermal interface materials with smaller filler particle diameters.","PeriodicalId":256936,"journal":{"name":"Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.2005.1412156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We report a simple method to improve bondline formation kinetics by means of a hierarchical set of channels patterned into one of the surfaces. These channel arrays are used to improve the gap squeezing and cooling of single and multiple flip chip electronic modules with highly viscous fluids and thermal pastes. They allow a fast formation of thin gaps or bond lines by reducing the pressure gradient in the thermal interface material as it moves in and out of the gap. Models describing the dynamics of Newtonian fluids in these "hierarchically nested channel" (HNC) interfaces combine squeeze flow and Hagen-Poiseuille theories. Rapid bond line formation is demonstrated for Newtonian fluids and selected particle-filled pastes. Modeling of particle-laden polymeric pastes includes Bingham and Hershel-Bulkley fluid properties. Bond line formation and thermal resistance is improved particularly for high viscosity-high thermal conductivity interface materials created from higher volumetric particle loadings or for thermal interface materials with smaller filler particle diameters.
分层嵌套通道,用于减少热阻的快速挤压界面[IC冷却应用]
我们报告了一种简单的方法,通过一组分层的通道图案进入其中一个表面来改善键线形成动力学。这些通道阵列用于改善具有高粘性流体和热糊状物的单个和多个倒装电子模块的间隙挤压和冷却。通过减少热界面材料进出间隙时的压力梯度,它们可以快速形成薄间隙或键合线。描述这些“分层嵌套通道”(HNC)界面中牛顿流体动力学的模型结合了挤压流动和hagan - poiseuille理论。快速键线形成演示牛顿流体和选定的颗粒填充膏体。颗粒负载聚合物糊状物的建模包括Bingham和hershell - bulkley流体特性。结合线的形成和热阻得到了改善,特别是对于由更高体积颗粒负载产生的高粘度-高导热界面材料或具有较小填充颗粒直径的热界面材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信