A new neural network and pole placement based adaptive composite controller

A. Hussain, A. Zayed, L. Smith
{"title":"A new neural network and pole placement based adaptive composite controller","authors":"A. Hussain, A. Zayed, L. Smith","doi":"10.1109/INMIC.2001.995349","DOIUrl":null,"url":null,"abstract":"The paper describes a new composite control method combining a neural network estimator with a conventional pole-placement based adaptive controller. The neural network estimation technique presented by Hussain (2000) is particularly effective when there is no complete plant information, or when considering a controlled plant as a 'black box'. In the proposed composite controller, the neural network estimator weights are adapted online to minimise the identification error, and these weights are fed into a robust self-tuning PID controller which provides an adaptive mechanism to ensure that the closed loop poles are placed at the desired positions. Simulation results show that the proposed method applies to general linear or nonlinear control systems.","PeriodicalId":286459,"journal":{"name":"Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2001.995349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The paper describes a new composite control method combining a neural network estimator with a conventional pole-placement based adaptive controller. The neural network estimation technique presented by Hussain (2000) is particularly effective when there is no complete plant information, or when considering a controlled plant as a 'black box'. In the proposed composite controller, the neural network estimator weights are adapted online to minimise the identification error, and these weights are fed into a robust self-tuning PID controller which provides an adaptive mechanism to ensure that the closed loop poles are placed at the desired positions. Simulation results show that the proposed method applies to general linear or nonlinear control systems.
一种新的基于神经网络和极点布置的自适应复合控制器
本文提出了一种将神经网络估计器与传统的基于极点的自适应控制器相结合的复合控制方法。Hussain(2000)提出的神经网络估计技术在没有完整的植物信息或将受控植物视为“黑盒子”时特别有效。在所提出的复合控制器中,在线调整神经网络估计器权重以最小化识别误差,并将这些权重馈送到鲁棒自整定PID控制器中,该控制器提供自适应机制以确保闭环极点放置在所需位置。仿真结果表明,该方法适用于一般的线性或非线性控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信