Incorporating user specific normalization in multimodal biometric fusion system

Messaoud Bengherabi, F. Harizi, A. Guessoum, M. Cheriet
{"title":"Incorporating user specific normalization in multimodal biometric fusion system","authors":"Messaoud Bengherabi, F. Harizi, A. Guessoum, M. Cheriet","doi":"10.1109/ISSPA.2012.6310596","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate the user-specific two-level fusion strategy in the context of multimodal biometrics. In this strategy, a client-specific score normalization procedure is applied firstly to each of the system outputs to be fused. Then, the resulting normalized outputs are fed into a common classifier. The logistic regression, non-confidence weighted sum and the likelihood ratio based on Gaussian mixture model are used as back-end classifiers. Three client-specific score normalization procedures are considered in this paper, i.e. Z-norm, F-norm and the Model-Specific Log-Likelihood Ratio MSLLR-norm. Our first findings based on 15 fusion experiments on the XM2VTS score database show that when the previous two-level fusion strategy is applied, the resulting fusion classifier outperforms the baseline classifiers significantly and a relative reduction of more than 50% in the equal error rate can be achieved. The second finding is that when using this two-level user-specific fusion strategy, the design of the final classifier is simplified and performance generalization of baseline classifiers is not straightforward. A great attention must be given to the choice of the combination normalization-back-end classifier.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to investigate the user-specific two-level fusion strategy in the context of multimodal biometrics. In this strategy, a client-specific score normalization procedure is applied firstly to each of the system outputs to be fused. Then, the resulting normalized outputs are fed into a common classifier. The logistic regression, non-confidence weighted sum and the likelihood ratio based on Gaussian mixture model are used as back-end classifiers. Three client-specific score normalization procedures are considered in this paper, i.e. Z-norm, F-norm and the Model-Specific Log-Likelihood Ratio MSLLR-norm. Our first findings based on 15 fusion experiments on the XM2VTS score database show that when the previous two-level fusion strategy is applied, the resulting fusion classifier outperforms the baseline classifiers significantly and a relative reduction of more than 50% in the equal error rate can be achieved. The second finding is that when using this two-level user-specific fusion strategy, the design of the final classifier is simplified and performance generalization of baseline classifiers is not straightforward. A great attention must be given to the choice of the combination normalization-back-end classifier.
在多模态生物特征融合系统中纳入用户特定归一化
本文的目的是研究在多模态生物识别背景下用户特定的两级融合策略。在此策略中,首先将特定于客户端的评分规范化过程应用于要融合的每个系统输出。然后,将得到的归一化输出馈送到公共分类器中。后端分类器采用逻辑回归、非置信度加权和和和基于高斯混合模型的似然比。本文考虑了三种客户特定评分归一化过程,即Z-norm, F-norm和模型特定对数似然比MSLLR-norm。基于XM2VTS分数数据库的15个融合实验,我们的第一个研究结果表明,当采用先前的两级融合策略时,所得到的融合分类器明显优于基线分类器,并且在相同错误率下可以实现50%以上的相对降低。第二个发现是,当使用这种两级用户特定融合策略时,最终分类器的设计被简化,基线分类器的性能泛化并不直接。对组合归一化-后端分类器的选择必须给予高度重视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信