DRL based Energy-Efficient Radio Resource Allocation Algorithm in Internet of Robotic Things

Homayun Kabir, Mau-Luen Tham, Yoong Choon Chang
{"title":"DRL based Energy-Efficient Radio Resource Allocation Algorithm in Internet of Robotic Things","authors":"Homayun Kabir, Mau-Luen Tham, Yoong Choon Chang","doi":"10.1109/ISWTA55313.2022.9942743","DOIUrl":null,"url":null,"abstract":"Communications among user equipment (UE) play a pivotal role in the coordination and information sharing in order to accomplish the predefined collaborative tasks of UE via the internet of robotic things (IoRT). Cloud radio access network (C-RAN) emerges as one of the most compelling architectures to ensure the UE demands. However, to optimize the power usage by fulfilling UE demand over a long operational period, the radio resource allocation (RRA) in C-RAN requires to be more visionary. To solve this challenge, we propose a deep reinforcement learning (DRL) based algorithm consisting of two different value-based networks. One network generates the target value for the second network for the purpose of better convergence. Under the same UE demands, simulation results verify that the proposed DRL algorithm outperforms the Deep Q Network (DQN) and conventional approaches in terms of power consumption.","PeriodicalId":293957,"journal":{"name":"2022 IEEE Symposium on Wireless Technology & Applications (ISWTA)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Wireless Technology & Applications (ISWTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWTA55313.2022.9942743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Communications among user equipment (UE) play a pivotal role in the coordination and information sharing in order to accomplish the predefined collaborative tasks of UE via the internet of robotic things (IoRT). Cloud radio access network (C-RAN) emerges as one of the most compelling architectures to ensure the UE demands. However, to optimize the power usage by fulfilling UE demand over a long operational period, the radio resource allocation (RRA) in C-RAN requires to be more visionary. To solve this challenge, we propose a deep reinforcement learning (DRL) based algorithm consisting of two different value-based networks. One network generates the target value for the second network for the purpose of better convergence. Under the same UE demands, simulation results verify that the proposed DRL algorithm outperforms the Deep Q Network (DQN) and conventional approaches in terms of power consumption.
基于DRL的机器人物联网节能无线资源分配算法
为了通过机器人物联网(IoRT)完成预定的用户设备协同任务,用户设备之间的通信在协调和信息共享中起着至关重要的作用。云无线接入网(C-RAN)成为确保用户终端需求的最具吸引力的架构之一。然而,为了在长运行周期内通过满足UE需求来优化功率使用,C-RAN中的无线电资源分配(RRA)需要更具远见。为了解决这一挑战,我们提出了一种基于深度强化学习(DRL)的算法,该算法由两个不同的基于值的网络组成。一个网络为第二个网络生成目标值,以便更好地收敛。在相同的UE需求下,仿真结果验证了所提出的DRL算法在功耗方面优于深度Q网络(DQN)和传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信