Computation Analysis for Identifying the Protagonist and Antagonist and their Sentiments in Harry Potter Books

D. Tayal, Sonakshi Vij, Divya Arora, Bhavna Meena, P. Jain, Kritik Sharma
{"title":"Computation Analysis for Identifying the Protagonist and Antagonist and their Sentiments in Harry Potter Books","authors":"D. Tayal, Sonakshi Vij, Divya Arora, Bhavna Meena, P. Jain, Kritik Sharma","doi":"10.1109/AIST55798.2022.10065317","DOIUrl":null,"url":null,"abstract":"The main goal of sentiment analysis is to find the text polarity (positive or negative). Sentiment analysis can be Natural language processing and computational literary studies have long been interested in sentiment analysis, which can be used to infer relationships between fictional characters. This study uses sentence-based semantic analysis to analyze sentiment in the Harry Potter series. The findings showed that among the primary characters with heroic attributes, Harry Potter scored the most positive polarity; Voldemort scored the most negative polarity, and Hermoine scored the neutral polarity.","PeriodicalId":360351,"journal":{"name":"2022 4th International Conference on Artificial Intelligence and Speech Technology (AIST)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Artificial Intelligence and Speech Technology (AIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIST55798.2022.10065317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main goal of sentiment analysis is to find the text polarity (positive or negative). Sentiment analysis can be Natural language processing and computational literary studies have long been interested in sentiment analysis, which can be used to infer relationships between fictional characters. This study uses sentence-based semantic analysis to analyze sentiment in the Harry Potter series. The findings showed that among the primary characters with heroic attributes, Harry Potter scored the most positive polarity; Voldemort scored the most negative polarity, and Hermoine scored the neutral polarity.
《哈利·波特》系列小说中主人公与反派及其情感识别的计算分析
情感分析的主要目标是找到文本的极性(积极或消极)。自然语言处理和计算文学研究一直对情感分析感兴趣,情感分析可以用来推断虚构人物之间的关系。本研究采用基于句子的语义分析方法对《哈利波特》系列小说中的情感进行分析。结果表明,在具有英雄属性的主要人物中,哈利·波特的正极性得分最高;伏地魔的负极性得分最高,赫敏的中性极性得分最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信