{"title":"Recognition of motion of human upper limb using sEMG in real time: Towards bilateral rehabilitation","authors":"Zhibin Song, Shuxiang Guo, Muye Pang, Songyuan Zhang","doi":"10.1109/ROBIO.2012.6491165","DOIUrl":null,"url":null,"abstract":"The surface electromyographic (sEMG) signal has been researched in many fields, such as medical diagnoses and prostheses control. In this paper, recognition of motion of human upper limb by processing sEMG signal in real time was proposed for application in bilateral rehabilitation, in which hemiplegia patients trained their impaired limbs by rehabilitation device based on motion of the intact limbs. In the processing of feature exaction of sEMG, Wavelet packet transform (WPT) and autoregressive (AR) model were used. The effect of feature exaction with both methods was discussed through the processing of classification where Back-propagation Neural Networks were trained. The experimental results show both methods can obtain reliable accuracy of motion pattern recognition. Moreover, on the experimental condition, the recognized accuracy of WPT is higher than that of AR model.","PeriodicalId":426468,"journal":{"name":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2012.6491165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
The surface electromyographic (sEMG) signal has been researched in many fields, such as medical diagnoses and prostheses control. In this paper, recognition of motion of human upper limb by processing sEMG signal in real time was proposed for application in bilateral rehabilitation, in which hemiplegia patients trained their impaired limbs by rehabilitation device based on motion of the intact limbs. In the processing of feature exaction of sEMG, Wavelet packet transform (WPT) and autoregressive (AR) model were used. The effect of feature exaction with both methods was discussed through the processing of classification where Back-propagation Neural Networks were trained. The experimental results show both methods can obtain reliable accuracy of motion pattern recognition. Moreover, on the experimental condition, the recognized accuracy of WPT is higher than that of AR model.