Differential Dynamic Programming for Multi-Phase Rigid Contact Dynamics

Rohan Budhiraja, Justin Carpentier, Carlos Mastalli, N. Mansard
{"title":"Differential Dynamic Programming for Multi-Phase Rigid Contact Dynamics","authors":"Rohan Budhiraja, Justin Carpentier, Carlos Mastalli, N. Mansard","doi":"10.1109/HUMANOIDS.2018.8624925","DOIUrl":null,"url":null,"abstract":"A common strategy to generate efficient locomotion movements is to split the problem into two consecutive steps: the first one generates the contact sequence together with the centroidal trajectory, while the second step computes the whole-body trajectory that follows the centroidal pattern. While the second step is generally handled by a simple program such as an inverse kinematics solver, we propose in this paper to compute the whole-body trajectory by using a local optimal control solver, namely Differential Dynamic Programming (DDP). Our method produces more efficient motions, with lower forces and smaller impacts, by exploiting the Angular Momentum (AM). With this aim, we propose an original DDP formulation exploiting the Karush- Kuhn-Tucker constraint of the rigid contact model. We experimentally show the importance of this approach by executing large steps walking on the real HRP-2 robot, and by solving the problem of attitude control under the absence of external contact forces.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8624925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

A common strategy to generate efficient locomotion movements is to split the problem into two consecutive steps: the first one generates the contact sequence together with the centroidal trajectory, while the second step computes the whole-body trajectory that follows the centroidal pattern. While the second step is generally handled by a simple program such as an inverse kinematics solver, we propose in this paper to compute the whole-body trajectory by using a local optimal control solver, namely Differential Dynamic Programming (DDP). Our method produces more efficient motions, with lower forces and smaller impacts, by exploiting the Angular Momentum (AM). With this aim, we propose an original DDP formulation exploiting the Karush- Kuhn-Tucker constraint of the rigid contact model. We experimentally show the importance of this approach by executing large steps walking on the real HRP-2 robot, and by solving the problem of attitude control under the absence of external contact forces.
多相刚性接触动力学的微分动态规划
生成高效运动动作的常用策略是将问题分成两个连续的步骤:第一步生成接触序列和质心轨迹,而第二步计算遵循质心模式的全身轨迹。而第二步通常是由一个简单的程序,如逆运动学求解器来处理,我们在本文中建议使用局部最优控制求解器,即微分动态规划(DDP)来计算全身轨迹。我们的方法通过利用角动量(AM),以更低的力和更小的冲击产生更有效的运动。为此,我们提出了一种利用刚性接触模型的Karush- Kuhn-Tucker约束的原始DDP公式。我们通过在真实的HRP-2机器人上执行大步行走实验,并通过解决无外部接触力下的姿态控制问题,证明了该方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信