A Joint Model based on CNN-LSTMs in Dialogue Understanding

Xinlu Zhao, E. Haihong, Meina Song
{"title":"A Joint Model based on CNN-LSTMs in Dialogue Understanding","authors":"Xinlu Zhao, E. Haihong, Meina Song","doi":"10.1109/ICISCAE.2018.8666842","DOIUrl":null,"url":null,"abstract":"In Task-oriented Dialogue System, intent recognition and slot filling are two key subtasks of dialogue understanding (DU) module. Considering the strong relationship between intent and slots, this paper proposes an encoder-decoder architecture (using CNN-LSTMs) which based on attention mechanism to jointly model the two subtasks. Meanwhile, this paper also discusses the performance impact of the emitted slots information on the recognition of intent when jointly modeling. Our proposed model obtains 1.31% accuracy promotion on intent recognition and 0.90% gain on slot filling over the baseline model.","PeriodicalId":129861,"journal":{"name":"2018 International Conference on Information Systems and Computer Aided Education (ICISCAE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information Systems and Computer Aided Education (ICISCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCAE.2018.8666842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In Task-oriented Dialogue System, intent recognition and slot filling are two key subtasks of dialogue understanding (DU) module. Considering the strong relationship between intent and slots, this paper proposes an encoder-decoder architecture (using CNN-LSTMs) which based on attention mechanism to jointly model the two subtasks. Meanwhile, this paper also discusses the performance impact of the emitted slots information on the recognition of intent when jointly modeling. Our proposed model obtains 1.31% accuracy promotion on intent recognition and 0.90% gain on slot filling over the baseline model.
基于cnn - lstm的对话理解联合模型
在面向任务的对话系统中,意图识别和槽位填充是对话理解模块的两个关键子任务。考虑到意图和槽之间的强相关性,本文提出了一种基于注意机制的编码器-解码器架构(采用CNN-LSTMs),对两个子任务进行联合建模。同时,本文还讨论了在联合建模时发出的槽信息对意图识别的性能影响。与基线模型相比,我们提出的模型在意图识别上的准确率提高了1.31%,在槽填充上的准确率提高了0.90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信