A Micromachined Thermo-Optic Tunable Laser

H. Cai, B. Liu, X. Zhang, W. M. Zhu, J. Tamil, W. Zhang, Q. Zhang, A. Liu
{"title":"A Micromachined Thermo-Optic Tunable Laser","authors":"H. Cai, B. Liu, X. Zhang, W. M. Zhu, J. Tamil, W. Zhang, Q. Zhang, A. Liu","doi":"10.1109/MEMSYS.2009.4805561","DOIUrl":null,"url":null,"abstract":"The paper presents a thermo-optic tunable laser that makes use of a micromachined etalon to form the external cavity. The wavelength tuning is obtained by the thermo-optic effect of the silicon material. In experiment, a wavelength tuning range of 14 nm is demonstrated by applying a heating current of 18.7 mA to a deep-etched silicon etalon of 206 ¿m wide. In the dynamic test, this laser measures a tuning speed of 3.2 ¿s, which is much faster than the typical speed of 1 ms as given by the previous MEMS tunable lasers that rely on the motion of mirrors or gratings. Since this laser is based on a different tuning mechanism of thermo-optic effect and requires no mechanical movement, it possesses many advantages such as fast speed, simple configuration and planar structure, and will broaden the applications of MEMS tunable lasers.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper presents a thermo-optic tunable laser that makes use of a micromachined etalon to form the external cavity. The wavelength tuning is obtained by the thermo-optic effect of the silicon material. In experiment, a wavelength tuning range of 14 nm is demonstrated by applying a heating current of 18.7 mA to a deep-etched silicon etalon of 206 ¿m wide. In the dynamic test, this laser measures a tuning speed of 3.2 ¿s, which is much faster than the typical speed of 1 ms as given by the previous MEMS tunable lasers that rely on the motion of mirrors or gratings. Since this laser is based on a different tuning mechanism of thermo-optic effect and requires no mechanical movement, it possesses many advantages such as fast speed, simple configuration and planar structure, and will broaden the applications of MEMS tunable lasers.
微机械热光可调谐激光器
本文介绍了一种利用微机械标准子形成外腔的热光可调谐激光器。波长调谐是利用硅材料的热光效应实现的。在实验中,通过施加18.7 mA的加热电流到206m宽的深蚀刻硅标准子,证明了波长调谐范围为14 nm。在动态测试中,该激光器测量到3.2¿s的调谐速度,这比以前依靠反射镜或光栅运动的MEMS可调谐激光器给出的1 ms的典型速度快得多。由于该激光器基于不同的热光效应调谐机制,不需要机械运动,具有速度快、结构简单、平面化等优点,将拓宽MEMS可调谐激光器的应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信