Accelerating Template Matching for Efficient Object Tracking

A. V. Cardoso, N. Nedjah, L. M. Mourelle
{"title":"Accelerating Template Matching for Efficient Object Tracking","authors":"A. V. Cardoso, N. Nedjah, L. M. Mourelle","doi":"10.1109/LASCAS.2019.8667596","DOIUrl":null,"url":null,"abstract":"Template matching is used to determine the degree of similarity between two images of the same size. Pearson’s Correlation Coefficient is applied, due to its property of invariance to brightness changes. This coefficient is computed for each image pixel, entailing a computationally intensive task. In order to accelerate this process, a dedicated co-processor was designed to implement this computation. To improve the search for the maximum correlation point between the image and the template, we used, in this work, Bacteria Foraging Optimization, one of the swarm intelligence strategies. The search process is run by an embedded general purpose processor. The work presented in this paper describes the implementation of the embedded system and compares the results obtained here to those previously obtained when using other swarm intelligent strategies.","PeriodicalId":142430,"journal":{"name":"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2019.8667596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Template matching is used to determine the degree of similarity between two images of the same size. Pearson’s Correlation Coefficient is applied, due to its property of invariance to brightness changes. This coefficient is computed for each image pixel, entailing a computationally intensive task. In order to accelerate this process, a dedicated co-processor was designed to implement this computation. To improve the search for the maximum correlation point between the image and the template, we used, in this work, Bacteria Foraging Optimization, one of the swarm intelligence strategies. The search process is run by an embedded general purpose processor. The work presented in this paper describes the implementation of the embedded system and compares the results obtained here to those previously obtained when using other swarm intelligent strategies.
加速模板匹配的有效目标跟踪
模板匹配用于确定相同尺寸的两幅图像之间的相似程度。由于皮尔逊相关系数对亮度变化具有不变性,因此采用了皮尔逊相关系数。这个系数是为每个图像像素计算的,这是一个计算密集型的任务。为了加速这一过程,设计了一个专用的协处理器来实现这一计算。为了提高对图像和模板之间最大相关点的搜索能力,我们在这项工作中使用了群体智能策略之一的细菌觅食优化。搜索过程由嵌入式通用处理器运行。本文所介绍的工作描述了嵌入式系统的实现,并将这里获得的结果与之前使用其他群体智能策略时获得的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信