{"title":"Métodos Axiomáticos: a Interpretação Matemática de Lawvere da Lógica de Hegel","authors":"N. Corrêa","doi":"10.25247/p1982-999x.2020.v20n3.p206-239","DOIUrl":null,"url":null,"abstract":"O pensamento axiomático de Hilbert foi um influente modelo filosófico que motivou movimentos como o positivismo no início do século XX, em diversas áreas dentro, e fora, da filosofia, como a epistemologia e a metamatemática. O formalismo axiomático fornece, através do uso da lógica de primeira ordem, uma importante fundação para modelos lógicos formais, o que, para Hilbert, representaria um modelo universal de investigação empírica, não só para a matemática, mas para todas as ciências naturais, e pela visão positivista, também a filosofia. Contudo, no caso mais específico da matemática, existe uma certa descomunicação entre os fundamentos da matemática e sua prática, onde métodos informais, ainda promovem elegantes ferramentas para matemáticos de diversas áreas, inclusive, quando certos paradigmas tentam ser quebrados. É exatamente esta assincronia entre os fundamentos da matemática, e a sua prática que iremos investigar neste estudo. Lawvere, insatisfeito com a “fundação não fundamentada” do método axiomático proposto por Hilbert, e inspirado pela dialética hegeliana, procurou revisar os fundamentos da matemática pela lógica categórica e a Teoria das Categorias. Vemos neste estudo, como as interpretações de Lawvere de conceitos da lógica de Hegel, como, equivalência, unidade dos opostos e “aufheben”, permitem uma nova abordagem matemática, com um posicionamento filosófico que procura, de certa forma, transcender a dicotomia entre escolas analíticas e continentais. Lawvere trata a lógica objetiva de Hegel como uma possível estratégia para resolver o problema de aterramento lógico em metafísica. Por fim, vemos como as contribuições de Lawvere para a axiomatização da lógica categórica tiveram impactos inovadores na metamatemática, especialmente no desenvolvimento das fundações univalentes de Vladimir Voevodsky.","PeriodicalId":145419,"journal":{"name":"Revista Ágora Filosófica","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ágora Filosófica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25247/p1982-999x.2020.v20n3.p206-239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
O pensamento axiomático de Hilbert foi um influente modelo filosófico que motivou movimentos como o positivismo no início do século XX, em diversas áreas dentro, e fora, da filosofia, como a epistemologia e a metamatemática. O formalismo axiomático fornece, através do uso da lógica de primeira ordem, uma importante fundação para modelos lógicos formais, o que, para Hilbert, representaria um modelo universal de investigação empírica, não só para a matemática, mas para todas as ciências naturais, e pela visão positivista, também a filosofia. Contudo, no caso mais específico da matemática, existe uma certa descomunicação entre os fundamentos da matemática e sua prática, onde métodos informais, ainda promovem elegantes ferramentas para matemáticos de diversas áreas, inclusive, quando certos paradigmas tentam ser quebrados. É exatamente esta assincronia entre os fundamentos da matemática, e a sua prática que iremos investigar neste estudo. Lawvere, insatisfeito com a “fundação não fundamentada” do método axiomático proposto por Hilbert, e inspirado pela dialética hegeliana, procurou revisar os fundamentos da matemática pela lógica categórica e a Teoria das Categorias. Vemos neste estudo, como as interpretações de Lawvere de conceitos da lógica de Hegel, como, equivalência, unidade dos opostos e “aufheben”, permitem uma nova abordagem matemática, com um posicionamento filosófico que procura, de certa forma, transcender a dicotomia entre escolas analíticas e continentais. Lawvere trata a lógica objetiva de Hegel como uma possível estratégia para resolver o problema de aterramento lógico em metafísica. Por fim, vemos como as contribuições de Lawvere para a axiomatização da lógica categórica tiveram impactos inovadores na metamatemática, especialmente no desenvolvimento das fundações univalentes de Vladimir Voevodsky.