Real time data association for FastSLAM

Juan I. Nieto, J. Guivant, E. Nebot, S. Thrun
{"title":"Real time data association for FastSLAM","authors":"Juan I. Nieto, J. Guivant, E. Nebot, S. Thrun","doi":"10.1109/ROBOT.2003.1241630","DOIUrl":null,"url":null,"abstract":"The ability to simultaneously localise a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. This paper presents a real-world implementation of FastSLAM, an algorithm that recursively estimates the full posterior distribution of both robot pose and landmark locations. In particular, we present an extension to FastSLAM that addresses the data association problem using a nearest neighbor technique. Building on this, we also present a novel multiple hypotheses tracking implementation (MHT) to handle uncertainty in the data association. Finally an extension to the multi-robot case is introduced. Our algorithm has been run successfully using a number of data sets obtained in outdoor environments. Experimental results are presented that demonstrate the performance of the algorithms when compared with standard Kalman filter-based approaches.","PeriodicalId":315346,"journal":{"name":"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"146","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2003.1241630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 146

Abstract

The ability to simultaneously localise a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. This paper presents a real-world implementation of FastSLAM, an algorithm that recursively estimates the full posterior distribution of both robot pose and landmark locations. In particular, we present an extension to FastSLAM that addresses the data association problem using a nearest neighbor technique. Building on this, we also present a novel multiple hypotheses tracking implementation (MHT) to handle uncertainty in the data association. Finally an extension to the multi-robot case is introduced. Our algorithm has been run successfully using a number of data sets obtained in outdoor environments. Experimental results are presented that demonstrate the performance of the algorithms when compared with standard Kalman filter-based approaches.
FastSLAM的实时数据关联
许多人认为,同时定位机器人并准确绘制其周围环境的能力是真正自主机器人的关键先决条件。本文介绍了FastSLAM的现实实现,该算法递归地估计机器人姿势和地标位置的完整后验分布。特别地,我们提出了FastSLAM的扩展,该扩展使用最近邻技术解决数据关联问题。在此基础上,我们还提出了一种新的多假设跟踪实现(MHT)来处理数据关联中的不确定性。最后介绍了多机器人案例的扩展。我们的算法已经成功地在室外环境中使用了大量的数据集。实验结果表明,与基于标准卡尔曼滤波的方法相比,该算法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信