An Improved Multi-modal Data Decision Fusion Method Based on DS Evidence Theory

Shengfu Lu, Peng Li, Mi Li
{"title":"An Improved Multi-modal Data Decision Fusion Method Based on DS Evidence Theory","authors":"Shengfu Lu, Peng Li, Mi Li","doi":"10.1109/ITNEC48623.2020.9084828","DOIUrl":null,"url":null,"abstract":"The method from DS evidence theory based multi-modal information decision fusion uses the classification structure information which the correct and error classification information provided by the classifiers. These two types of information affect the fusion results of DS evidence theory. This paper proposes a new method(DShW) for correct and error classification information in the balanced classification structure information based on DS evidence theory. That is, a method based on inertia weight normalization is introduced in the confusion matrix. To adjust the specific gravity of correct and error classification in classification structure information by changing the size of the value h, so as to achieve the purpose of balancing correct and error classification information. By comparing with other classifiers, we find that the DShW method effectively improves the accuracy of decision fusion.","PeriodicalId":235524,"journal":{"name":"2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC48623.2020.9084828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The method from DS evidence theory based multi-modal information decision fusion uses the classification structure information which the correct and error classification information provided by the classifiers. These two types of information affect the fusion results of DS evidence theory. This paper proposes a new method(DShW) for correct and error classification information in the balanced classification structure information based on DS evidence theory. That is, a method based on inertia weight normalization is introduced in the confusion matrix. To adjust the specific gravity of correct and error classification in classification structure information by changing the size of the value h, so as to achieve the purpose of balancing correct and error classification information. By comparing with other classifiers, we find that the DShW method effectively improves the accuracy of decision fusion.
基于DS证据理论的改进多模态数据决策融合方法
基于DS证据理论的多模态信息决策融合方法利用了分类器提供的正确和错误分类信息的分类结构信息。这两类信息影响了DS证据理论的融合结果。提出了一种基于DS证据理论的平衡分类结构信息中正确和错误分类信息的新方法(DShW)。即在混淆矩阵中引入一种基于惯性权值归一化的方法。通过改变值h的大小来调整分类结构信息中正确和错误分类的比重,从而达到平衡正确和错误分类信息的目的。通过与其他分类器的比较,我们发现DShW方法有效地提高了决策融合的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信