On the efficient implementation of higher radix square root algorithms

P. Montuschi, L. Ciminiera
{"title":"On the efficient implementation of higher radix square root algorithms","authors":"P. Montuschi, L. Ciminiera","doi":"10.1109/ARITH.1989.72821","DOIUrl":null,"url":null,"abstract":"Square root nonrestoring algorithms operating with a radix higher than two (but power of 2) are discussed. Formulas are derived delimiting the feasibility space of the class of algorithms considered as a function of the different parameters. This definition leads to the determination of some of these parameters; in particular, it is possible to compute the number of partial reminder bits to be inspected for digit selection and the number of operand bits to be inspected to generate the first radicand value, as both parameters have a relevant impact on the implementation. The specific case of radix 4, digit set (-2, -1, 0, +1, +2) and partial remainder represented by the sum of two numbers is considered.<<ETX>>","PeriodicalId":305909,"journal":{"name":"Proceedings of 9th Symposium on Computer Arithmetic","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 9th Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1989.72821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Square root nonrestoring algorithms operating with a radix higher than two (but power of 2) are discussed. Formulas are derived delimiting the feasibility space of the class of algorithms considered as a function of the different parameters. This definition leads to the determination of some of these parameters; in particular, it is possible to compute the number of partial reminder bits to be inspected for digit selection and the number of operand bits to be inspected to generate the first radicand value, as both parameters have a relevant impact on the implementation. The specific case of radix 4, digit set (-2, -1, 0, +1, +2) and partial remainder represented by the sum of two numbers is considered.<>
关于高根数平方根算法的高效实现
讨论了根数大于2(但为2的幂)的平方根非恢复算法。导出了将算法的可行性空间划分为不同参数的函数的公式。这个定义导致了其中一些参数的确定;特别是,可以计算为数字选择而检查的部分提醒位的数量,以及为生成第一个根和值而检查的操作数位的数量,因为这两个参数对实现都有相关的影响。考虑了基数4、数字集(-2,-1,0,+1,+2)和由两个数的和表示的部分余数的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信