System-level benchmark of synaptic device characteristics for neuro-inspired computing

Pai-Yu Chen, Xiaochen Peng, Shimeng Yu
{"title":"System-level benchmark of synaptic device characteristics for neuro-inspired computing","authors":"Pai-Yu Chen, Xiaochen Peng, Shimeng Yu","doi":"10.1109/S3S.2017.8309197","DOIUrl":null,"url":null,"abstract":"Synaptic devices based on emerging non-volatile memory devices have been proposed to emulate analog synapses for neuro-inspired computing. However, the non-ideal device characteristics such as nonlinear and asymmetric weight increase/decrease, and finite on/off ratio, may adversely affect the learning accuracy at the system-level. In this paper, we present a device-circuit-algorithm co-simulation framework, i.e. NeuroSim, to systematically the metrics such as accuracy, area, latency and energy for online learning with synaptic devices. We surveyed a few representative synaptic devices in literature, and concluded that today's realistic devices are difficult to achieve accurate and fast learning. Finally, the targeted and ideal specifications for synaptic device engineering are proposed.","PeriodicalId":333587,"journal":{"name":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2017.8309197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Synaptic devices based on emerging non-volatile memory devices have been proposed to emulate analog synapses for neuro-inspired computing. However, the non-ideal device characteristics such as nonlinear and asymmetric weight increase/decrease, and finite on/off ratio, may adversely affect the learning accuracy at the system-level. In this paper, we present a device-circuit-algorithm co-simulation framework, i.e. NeuroSim, to systematically the metrics such as accuracy, area, latency and energy for online learning with synaptic devices. We surveyed a few representative synaptic devices in literature, and concluded that today's realistic devices are difficult to achieve accurate and fast learning. Finally, the targeted and ideal specifications for synaptic device engineering are proposed.
神经启发计算的突触装置特性的系统级基准
基于新兴的非易失性存储设备的突触装置已被提出用于模拟神经启发计算的模拟突触。然而,非理想的器件特性,如非线性和非对称的重量增加/减少,有限的开/关比,可能会对系统级的学习精度产生不利影响。在本文中,我们提出了一个设备-电路-算法联合仿真框架,即NeuroSim,以系统地测量准确度,面积,延迟和能量等指标与突触设备在线学习。我们调查了文献中一些有代表性的突触装置,并得出结论,目前的现实装置难以实现准确和快速的学习。最后,提出了突触器件工程的目标规范和理想规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信