{"title":"SiC and GaN power transistors switching energy evaluation in hard and soft switching conditions","authors":"Ke Li, Paul L. Evans, Mark C. Johnson","doi":"10.1109/WIPDA.2016.7799922","DOIUrl":null,"url":null,"abstract":"SiC and GaN power transistors switching energy are compared in this paper. In order to compare switching energy Esw of the same power rating device, a theoretical analysis is given to compare SiC device conduction loss and switching losses change when device maximal blocking voltage reduces by half. After that, Esw of a 650V GaN-HEMT is measured in hard switching condition and is compared with that of a 1200V SiC-MOSFET and a 650V SiC-MOSFET with the same current rating, in which it is shown that Esw of a GaN-HEMT is smaller than a 1200V SiC-MOSFET, which is smaller than 650V SiC-MOSFET. Following by that, in order to reduce device turn-ON switching energy, a zero voltage switching circuit is used to evaluate all the devices. Device output capacitance stored energy Eoss are measured and turn-OFF switching losses are obtained by subtracting Eoss, which shows that GaN-HEMT is sill better than SiC device in terms of switching losses and 1200V SiC-MOSFET has smaller switching losses than 650V SiC-MOSFET.","PeriodicalId":431347,"journal":{"name":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"117 21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2016.7799922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
SiC and GaN power transistors switching energy are compared in this paper. In order to compare switching energy Esw of the same power rating device, a theoretical analysis is given to compare SiC device conduction loss and switching losses change when device maximal blocking voltage reduces by half. After that, Esw of a 650V GaN-HEMT is measured in hard switching condition and is compared with that of a 1200V SiC-MOSFET and a 650V SiC-MOSFET with the same current rating, in which it is shown that Esw of a GaN-HEMT is smaller than a 1200V SiC-MOSFET, which is smaller than 650V SiC-MOSFET. Following by that, in order to reduce device turn-ON switching energy, a zero voltage switching circuit is used to evaluate all the devices. Device output capacitance stored energy Eoss are measured and turn-OFF switching losses are obtained by subtracting Eoss, which shows that GaN-HEMT is sill better than SiC device in terms of switching losses and 1200V SiC-MOSFET has smaller switching losses than 650V SiC-MOSFET.