Anomaly Detection in Business Process based on Data Stream Mining

G. Tavares, V. G. T. D. Costa, Vinicius Eiji Martins, P. Ceravolo, Sylvio Barbon Junior
{"title":"Anomaly Detection in Business Process based on Data Stream Mining","authors":"G. Tavares, V. G. T. D. Costa, Vinicius Eiji Martins, P. Ceravolo, Sylvio Barbon Junior","doi":"10.1145/3229345.3229362","DOIUrl":null,"url":null,"abstract":"Identifying fraudulent or anomalous business procedures is today a key challenge for organisations of any dimension. Nevertheless, the continuous nature of business conveys to the continuous acquisition of data in support of business process monitoring. In light of this, we propose a method for online anomaly detection in business processes. From a stream of events, our approach extract cases descriptors and applies a density-based clustering technique to detect outliers. We applied our method to a real-life dataset, and we used streaming clustering measures for evaluating performances. In particular, we obtained Cluster Mapping Measure of 95.3% and Homogeneity of 98.1% discovering anomalous cases in real-time.","PeriodicalId":284178,"journal":{"name":"Proceedings of the XIV Brazilian Symposium on Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the XIV Brazilian Symposium on Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3229345.3229362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Identifying fraudulent or anomalous business procedures is today a key challenge for organisations of any dimension. Nevertheless, the continuous nature of business conveys to the continuous acquisition of data in support of business process monitoring. In light of this, we propose a method for online anomaly detection in business processes. From a stream of events, our approach extract cases descriptors and applies a density-based clustering technique to detect outliers. We applied our method to a real-life dataset, and we used streaming clustering measures for evaluating performances. In particular, we obtained Cluster Mapping Measure of 95.3% and Homogeneity of 98.1% discovering anomalous cases in real-time.
基于数据流挖掘的业务流程异常检测
识别欺诈性或异常的业务流程是当今任何规模的组织面临的关键挑战。然而,业务的连续性意味着持续获取数据以支持业务流程监控。鉴于此,我们提出了一种业务流程在线异常检测方法。我们的方法从事件流中提取案例描述符,并应用基于密度的聚类技术来检测异常值。我们将我们的方法应用于一个真实的数据集,并使用流聚类度量来评估性能。特别是,我们获得了95.3%的聚类映射度量和98.1%的同质性,实时发现异常案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信