A Spectrum Allocation Mechanism Based on HJ-DQPSO for Cognitive Radio Networks

Zhu Jiang, Xiong Jiahao, Chen Hongcui, Han-Cheh Chao
{"title":"A Spectrum Allocation Mechanism Based on HJ-DQPSO for Cognitive Radio Networks","authors":"Zhu Jiang, Xiong Jiahao, Chen Hongcui, Han-Cheh Chao","doi":"10.4108/icst.mobimedia.2015.259026","DOIUrl":null,"url":null,"abstract":"In cognitive radio network model consisting of secondary users and primary users, in order to solve the difficult multi-objective spectrum allocation issue about maximizing network efficiency and users' fairness to access network, this paper proposes a new discrete multi-objective combinatorial optimization mechanism---HJ-DQPSO based on Hooke Jeeves (HJ) and Quantum Particle Swarm Optimization (QPSO) algorithm. The mechanism adopts HJ algorithm to local search to prevent falling into the local optimum, and proposes a discrete QPSO algorithm to match the discrete spectrum assignment model. The mechanism has the advantages of approximating optimal solution, rapid convergence, less parameters, avoiding falling into local optimum. Compared with existing spectrum assignment algorithms, the simulation results show that according to different optimization objectives, the HJ-DQPSO optimization mechanism for multi-objective optimization can better approximate optimal solution and converge fast. We can obtain a reasonable spectrum allocation scheme in the case of satisfying multiple optimization objectives.","PeriodicalId":334012,"journal":{"name":"EAI Endorsed Trans. Cogn. Commun.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Cogn. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/icst.mobimedia.2015.259026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In cognitive radio network model consisting of secondary users and primary users, in order to solve the difficult multi-objective spectrum allocation issue about maximizing network efficiency and users' fairness to access network, this paper proposes a new discrete multi-objective combinatorial optimization mechanism---HJ-DQPSO based on Hooke Jeeves (HJ) and Quantum Particle Swarm Optimization (QPSO) algorithm. The mechanism adopts HJ algorithm to local search to prevent falling into the local optimum, and proposes a discrete QPSO algorithm to match the discrete spectrum assignment model. The mechanism has the advantages of approximating optimal solution, rapid convergence, less parameters, avoiding falling into local optimum. Compared with existing spectrum assignment algorithms, the simulation results show that according to different optimization objectives, the HJ-DQPSO optimization mechanism for multi-objective optimization can better approximate optimal solution and converge fast. We can obtain a reasonable spectrum allocation scheme in the case of satisfying multiple optimization objectives.
基于HJ-DQPSO的认知无线网络频谱分配机制
在由二级用户和主用户组成的认知无线网络模型中,为了解决网络效率最大化和用户接入公平的多目标频谱分配难题,提出了一种基于Hooke Jeeves (HJ)和量子粒子群优化(QPSO)算法的离散多目标组合优化机制——HJ- dqpso。该机制采用HJ算法进行局部搜索,防止陷入局部最优,并提出了一种离散QPSO算法来匹配离散频谱分配模型。该机构具有逼近最优解、收敛速度快、参数少、避免陷入局部最优等优点。仿真结果表明,针对不同的优化目标,HJ-DQPSO多目标优化机制能更好地逼近最优解,收敛速度快。在满足多个优化目标的情况下,可以得到一个合理的频谱分配方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信