{"title":"A 64 kb multi-threshold SRAM array with novel differential 8T bitcell in 32 nm SOI CMOS technology","authors":"Samira Ataei, J. Stine","doi":"10.1109/S3S.2016.7804388","DOIUrl":null,"url":null,"abstract":"An 8T SRAM bitcell is presented to improve the read stability and writability of SRAM in scaled technologies and low voltages. The presented bitcell achieves a faster access time by increasing the read current by 21% compared to a 6T bitcell. The proposed 8T bitcell utilizes a differential operation, single port and one wordline, therefore, it does not require any architectural changes from 6T SRAM architectures. Moreover, the effects of process-induced VTH variations in multi-threshold 8T bitcells are examined and it is shown that the choice for the best dual-threshold configuration of the proposed 8T bitcell varies due to trade-offs between access time, leakage-power and read/write stability under process variations. In addition, timing variations of the sense \"amplifier enable signal\" due to random process variations is reduced by using a Multi Replica Bitline Delay technique to decrease SRAM read access time. The proposed 8T bitcell is demonstrated in a 64 kb SRAM array in 32 nm SOI CMOS technology that operates at 2 GHz at 0.9 V and 250 MHz at 0.3 V.","PeriodicalId":145660,"journal":{"name":"2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2016.7804388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
An 8T SRAM bitcell is presented to improve the read stability and writability of SRAM in scaled technologies and low voltages. The presented bitcell achieves a faster access time by increasing the read current by 21% compared to a 6T bitcell. The proposed 8T bitcell utilizes a differential operation, single port and one wordline, therefore, it does not require any architectural changes from 6T SRAM architectures. Moreover, the effects of process-induced VTH variations in multi-threshold 8T bitcells are examined and it is shown that the choice for the best dual-threshold configuration of the proposed 8T bitcell varies due to trade-offs between access time, leakage-power and read/write stability under process variations. In addition, timing variations of the sense "amplifier enable signal" due to random process variations is reduced by using a Multi Replica Bitline Delay technique to decrease SRAM read access time. The proposed 8T bitcell is demonstrated in a 64 kb SRAM array in 32 nm SOI CMOS technology that operates at 2 GHz at 0.9 V and 250 MHz at 0.3 V.