{"title":"Hybrid-SoRo: Hybrid Switched Capacitor Power Management Architecture for Multi-Channel Piezoelectric Soft Robot","authors":"Hsin Cheng, Zhiwu Zheng, Prakhar Kumar, Yenan Chen, Minjie Chen","doi":"10.1109/APEC43599.2022.9773687","DOIUrl":null,"url":null,"abstract":"Soft robots are enabling technologies for many emerging and important applications. The operation voltages of many soft actuators, i.e., Macro Fiber Composites (MFCs) and Dielectric Elastomers (DEs), are usually above 1000 V. Many of these actuators need to work together to perform useful functions. This paper presents Hybrid-SoRo, a hybrid switched capacitor power management architecture for multi-channel piezoelectric soft robot. A 6 V-input dc-dc converter leverages the strengths of a transformer-based circuit in boosting the voltage and a switched capacitor multiplier in creating multiple voltage levels. A modular distribution unit controls the operation of each actuator. The 6 V-1500 V Hybrid-SoRo prototype achieves a power density of 1 W/g when driving a five-actuator inchworm soft robot. The peak efficiency of the 6 V-1500 V converter is 88.28%, and the full-load efficiency is 79.14%.","PeriodicalId":127006,"journal":{"name":"2022 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43599.2022.9773687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Soft robots are enabling technologies for many emerging and important applications. The operation voltages of many soft actuators, i.e., Macro Fiber Composites (MFCs) and Dielectric Elastomers (DEs), are usually above 1000 V. Many of these actuators need to work together to perform useful functions. This paper presents Hybrid-SoRo, a hybrid switched capacitor power management architecture for multi-channel piezoelectric soft robot. A 6 V-input dc-dc converter leverages the strengths of a transformer-based circuit in boosting the voltage and a switched capacitor multiplier in creating multiple voltage levels. A modular distribution unit controls the operation of each actuator. The 6 V-1500 V Hybrid-SoRo prototype achieves a power density of 1 W/g when driving a five-actuator inchworm soft robot. The peak efficiency of the 6 V-1500 V converter is 88.28%, and the full-load efficiency is 79.14%.