A Novel Method of Applying Big Data for Analysis Model of Library User Behavior

Kaijun Yu, Song Luo, Xuejun Zhou, Rui Wang, Longjie Sun
{"title":"A Novel Method of Applying Big Data for Analysis Model of Library User Behavior","authors":"Kaijun Yu, Song Luo, Xuejun Zhou, Rui Wang, Longjie Sun","doi":"10.2991/icoi-19.2019.130","DOIUrl":null,"url":null,"abstract":"A large number of library user behaviour data generated in real time in the era of big data artificial intelligence requires more efficient and scientific analysis technology to help libraries improve the level and quality of personalized services, while the increasingly popular campus Internet of Things system needs to be more Active network security precautions, proactively detect unreliable abnormal behavior of the network and feedback users to improve security awareness. Explores a big data analysis model using traditional data mining and classification learning, which combines user personality analysis and abnormal","PeriodicalId":171417,"journal":{"name":"Proceedings of the 2019 International Conference on Organizational Innovation (ICOI 2019)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 International Conference on Organizational Innovation (ICOI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/icoi-19.2019.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A large number of library user behaviour data generated in real time in the era of big data artificial intelligence requires more efficient and scientific analysis technology to help libraries improve the level and quality of personalized services, while the increasingly popular campus Internet of Things system needs to be more Active network security precautions, proactively detect unreliable abnormal behavior of the network and feedback users to improve security awareness. Explores a big data analysis model using traditional data mining and classification learning, which combines user personality analysis and abnormal
应用大数据构建图书馆用户行为分析模型的新方法
大数据人工智能时代实时生成的大量图书馆用户行为数据,需要更高效、科学的分析技术来帮助图书馆提高个性化服务的水平和质量,而日益普及的校园物联网系统则需要更加主动的网络安全防范措施,主动发现网络中不可靠的异常行为并反馈用户以提高安全意识。探索了一种利用传统数据挖掘和分类学习的大数据分析模型,将用户个性分析与异常相结合
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信