A better metric in kernel adaptive filtering

Airi Takeuchi, M. Yukawa, K. Müller
{"title":"A better metric in kernel adaptive filtering","authors":"Airi Takeuchi, M. Yukawa, K. Müller","doi":"10.1109/EUSIPCO.2016.7760514","DOIUrl":null,"url":null,"abstract":"The metric in the reproducing kernel Hilbert space (RKHS) is known to be given by the Gram matrix (which is also called the kernel matrix). It has been reported that the metric leads to a decorrelation of the kernelized input vector because its autocorrelation matrix can be approximated by the (down scaled) squared Gram matrix subject to some condition. In this paper, we derive a better metric (a best one under the condition) based on the approximation, and present an adaptive algorithm using the metric. Although the algorithm has quadratic complexity, we present its linear-complexity version based on a selective updating strategy. Numerical examples validate the approximation in a practical scenario, and show that the proposed metric yields fast convergence and tracking performance.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The metric in the reproducing kernel Hilbert space (RKHS) is known to be given by the Gram matrix (which is also called the kernel matrix). It has been reported that the metric leads to a decorrelation of the kernelized input vector because its autocorrelation matrix can be approximated by the (down scaled) squared Gram matrix subject to some condition. In this paper, we derive a better metric (a best one under the condition) based on the approximation, and present an adaptive algorithm using the metric. Although the algorithm has quadratic complexity, we present its linear-complexity version based on a selective updating strategy. Numerical examples validate the approximation in a practical scenario, and show that the proposed metric yields fast convergence and tracking performance.
核自适应滤波中一个更好的度量
再现核希尔伯特空间(RKHS)中的度规已知由格拉姆矩阵(也称为核矩阵)给出。据报道,度量导致核化输入向量的去相关,因为它的自相关矩阵可以在一定条件下由(降比例的)平方克矩阵近似。在此基础上,我们推导出了一个更好的度量(在此条件下的最佳度量),并给出了一个使用该度量的自适应算法。虽然该算法具有二次复杂度,但我们提出了基于选择性更新策略的线性复杂度版本。数值算例在实际场景中验证了该近似,并表明该度量具有快速收敛和跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信