A pusher/steerer model for strongly cooperative mobile robot manipulation

Russell G. Brown, J. Jennings
{"title":"A pusher/steerer model for strongly cooperative mobile robot manipulation","authors":"Russell G. Brown, J. Jennings","doi":"10.1109/IROS.1995.525941","DOIUrl":null,"url":null,"abstract":"Presents an empirical example of a strongly cooperative manipulation system (the pusher/steerer system), whose capabilities derive from the redistribution of resources typically used in a single robot system. The authors define strongly cooperative strategies to be, intuitively, those which are not trivially serializable. In the authors' system, one robot steers, and the other pushes; the object lies between them. The steerer is the only agent that has information about the path, while the pusher exerts the necessary motive force, and rotates to follow changes in the object's orientation. The system is asynchronous, with no explicit communication between the robots. The authors are interested in studying manipulation systems of this type, because they are strongly cooperative; that is, the two robots must act in concert to achieve the goal. The authors have performed over one hundred pusher/steerer manipulation experiments with two of their mobile robots, TOMMY and LILY. As the authors' analysis predicts, they have found that their system allows a wide variety of paths and manipulable objects for these robots.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

Presents an empirical example of a strongly cooperative manipulation system (the pusher/steerer system), whose capabilities derive from the redistribution of resources typically used in a single robot system. The authors define strongly cooperative strategies to be, intuitively, those which are not trivially serializable. In the authors' system, one robot steers, and the other pushes; the object lies between them. The steerer is the only agent that has information about the path, while the pusher exerts the necessary motive force, and rotates to follow changes in the object's orientation. The system is asynchronous, with no explicit communication between the robots. The authors are interested in studying manipulation systems of this type, because they are strongly cooperative; that is, the two robots must act in concert to achieve the goal. The authors have performed over one hundred pusher/steerer manipulation experiments with two of their mobile robots, TOMMY and LILY. As the authors' analysis predicts, they have found that their system allows a wide variety of paths and manipulable objects for these robots.
强合作移动机器人操作的推手/舵手模型
提出了一个强合作操作系统(推手/转向系统)的经验例子,其能力来源于通常在单个机器人系统中使用的资源再分配。作者将强协作策略直观地定义为那些不平凡的可串行化策略。在作者的系统中,一个机器人掌舵,另一个机器人推动;物体在它们之间。舵手是唯一拥有路径信息的智能体,而推手施加必要的动力,并随着物体方向的变化而旋转。该系统是异步的,机器人之间没有明确的通信。作者对这类操纵系统的研究很感兴趣,因为它们是强合作的;也就是说,两个机器人必须协同行动以实现目标。作者已经用他们的两个移动机器人TOMMY和LILY进行了一百多次推/转向操作实验。正如作者的分析所预测的那样,他们发现他们的系统为这些机器人提供了各种各样的路径和可操作的物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信