Megasfinities

Mario Arturo Ruiz Estrada
{"title":"Megasfinities","authors":"Mario Arturo Ruiz Estrada","doi":"10.2139/ssrn.3048672","DOIUrl":null,"url":null,"abstract":"This paper introduces a new mega-number that is called “Megasfinities”. The primary objective to propose the uses of Megasfinities in any multi-dimensional coordinate space is to extend new and unknown dimensions of analysis. These unknown dimensions involve new general-spaces, sub-spaces, micro-spaces, and Nano-space in any multi-dimensional coordinate space. In fact, this paper suggests the application of the Megasfinities coordinate space that can permit the visualization of a large number of unknown general-spaces, sub-spaces, micro-spaces, and Nano-spaces in any mega-graphical space. At the same time, all these spaces are representing different dimensions respectively.","PeriodicalId":153695,"journal":{"name":"Cognition in Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognition in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3048672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a new mega-number that is called “Megasfinities”. The primary objective to propose the uses of Megasfinities in any multi-dimensional coordinate space is to extend new and unknown dimensions of analysis. These unknown dimensions involve new general-spaces, sub-spaces, micro-spaces, and Nano-space in any multi-dimensional coordinate space. In fact, this paper suggests the application of the Megasfinities coordinate space that can permit the visualization of a large number of unknown general-spaces, sub-spaces, micro-spaces, and Nano-spaces in any mega-graphical space. At the same time, all these spaces are representing different dimensions respectively.
本文引入了一种新的巨型数,称为“巨型有限数”。提出在任何多维坐标空间中使用megasfinity的主要目的是扩展新的和未知的分析维度。这些未知维度涉及任何多维坐标空间中的新的一般空间、子空间、微空间和纳米空间。实际上,本文建议应用Megasfinities坐标空间,可以在任意的mega-graphic空间中可视化大量未知的一般空间、子空间、微空间和纳米空间。同时,这些空间分别代表着不同的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信