Domain adaptation for land-cover classification of remotely sensed images using ensemble of Multilayer Perceptrons

Shounak Chakraborty, M. Roy
{"title":"Domain adaptation for land-cover classification of remotely sensed images using ensemble of Multilayer Perceptrons","authors":"Shounak Chakraborty, M. Roy","doi":"10.1109/RAIT.2016.7507955","DOIUrl":null,"url":null,"abstract":"Domain Adaptation (DA) for remotely sensed images using ensemble of Multilayer Perceptrons (MLP) is presented in this article. Using the labelled information from a source domain, the proposed method utilises the disagreement among the MLPs to figure out the `most informative' patterns from the target domain using transfer learning. These selected patterns are then labelled by human expert and are used for training the ensemble. Finally the land-cover classes for a target region are predicted by applying a non-trainable majority voting rule among different MLPs in ensemble. Experiments have been conducted on multispectral images for two different regions in India obtained from Landsat-8 satellite and the proposed DA method outperforms the corresponding random sampling approach.","PeriodicalId":289216,"journal":{"name":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAIT.2016.7507955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Domain Adaptation (DA) for remotely sensed images using ensemble of Multilayer Perceptrons (MLP) is presented in this article. Using the labelled information from a source domain, the proposed method utilises the disagreement among the MLPs to figure out the `most informative' patterns from the target domain using transfer learning. These selected patterns are then labelled by human expert and are used for training the ensemble. Finally the land-cover classes for a target region are predicted by applying a non-trainable majority voting rule among different MLPs in ensemble. Experiments have been conducted on multispectral images for two different regions in India obtained from Landsat-8 satellite and the proposed DA method outperforms the corresponding random sampling approach.
基于多层感知器集成的遥感影像土地覆盖分类领域自适应
提出了一种基于多层感知器集成的遥感图像域自适应方法。利用来自源域的标记信息,该方法利用mlp之间的分歧,利用迁移学习从目标域找出“最具信息量”的模式。这些选择的模式然后由人类专家标记,并用于训练集成。最后,通过在不同mlp中应用不可训练的多数投票规则来预测目标区域的土地覆盖类别。利用Landsat-8卫星获取的印度两个不同地区的多光谱图像进行了实验,结果表明该方法优于相应的随机采样方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信