{"title":"Projected Nesterov's proximal-gradient signal recovery from compressive poisson measurements","authors":"Renliang Gu, Aleksandar Dogandzic","doi":"10.1109/ACSSC.2015.7421393","DOIUrl":null,"url":null,"abstract":"We develop a projected Nesterov's proximal-gradient (PNPG) scheme for reconstructing sparse signals from compressive Poisson-distributed measurements with the mean signal intensity that follows an affine model with known intercept. The objective function to be minimized is a sum of convex data fidelity (negative log-likelihood (NLL)) and regularization terms. We apply sparse signal regularization where the signal belongs to a closed convex set within the domain of the NLL and signal sparsity is imposed using total-variation (TV) penalty. We present analytical upper bounds on the regularization tuning constant. The proposed PNPG method employs projected Nesterov's acceleration step, function restart, and an adaptive step-size selection scheme that aims at obtaining a good local majorizing function of the N LL and reducing the time spent backtracking. We establish O (k-2) convergence of the PNPG method with step-size backtracking only and no restart. Numerical examples demonstrate the performance of the PNPG method.","PeriodicalId":172015,"journal":{"name":"2015 49th Asilomar Conference on Signals, Systems and Computers","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 49th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2015.7421393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We develop a projected Nesterov's proximal-gradient (PNPG) scheme for reconstructing sparse signals from compressive Poisson-distributed measurements with the mean signal intensity that follows an affine model with known intercept. The objective function to be minimized is a sum of convex data fidelity (negative log-likelihood (NLL)) and regularization terms. We apply sparse signal regularization where the signal belongs to a closed convex set within the domain of the NLL and signal sparsity is imposed using total-variation (TV) penalty. We present analytical upper bounds on the regularization tuning constant. The proposed PNPG method employs projected Nesterov's acceleration step, function restart, and an adaptive step-size selection scheme that aims at obtaining a good local majorizing function of the N LL and reducing the time spent backtracking. We establish O (k-2) convergence of the PNPG method with step-size backtracking only and no restart. Numerical examples demonstrate the performance of the PNPG method.