Examining the performance of topic modeling techniques in Twitter trends extraction

Mutia N. Kurniati, Woo-Jong Ryu, Md. Hijbul Alam, SangKeun Lee
{"title":"Examining the performance of topic modeling techniques in Twitter trends extraction","authors":"Mutia N. Kurniati, Woo-Jong Ryu, Md. Hijbul Alam, SangKeun Lee","doi":"10.1109/ICOIN.2014.6799706","DOIUrl":null,"url":null,"abstract":"It is very important to extract the Twitter trends since it reflects the personal view over 645 million of its users. We examine the effectiveness of two topic modeling techniques i.e., standard Latent Dirichlet Allocation (LDA) and semantic-based Joint Multi-grain Topic-Sentiment (JMTS) in Twitter trends extraction. In addition, we also examine the frequent phrase method. Our finding reveals that JMTS significantly outperforms frequent phrase method and LDA by 54% and 24%, respectively.","PeriodicalId":388486,"journal":{"name":"The International Conference on Information Networking 2014 (ICOIN2014)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Conference on Information Networking 2014 (ICOIN2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN.2014.6799706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

It is very important to extract the Twitter trends since it reflects the personal view over 645 million of its users. We examine the effectiveness of two topic modeling techniques i.e., standard Latent Dirichlet Allocation (LDA) and semantic-based Joint Multi-grain Topic-Sentiment (JMTS) in Twitter trends extraction. In addition, we also examine the frequent phrase method. Our finding reveals that JMTS significantly outperforms frequent phrase method and LDA by 54% and 24%, respectively.
考察主题建模技术在Twitter趋势提取中的性能
提取Twitter趋势非常重要,因为它反映了超过6.45亿Twitter用户的个人观点。我们研究了两种主题建模技术,即标准潜狄利克雷分配(LDA)和基于语义的联合多粒主题情感(JMTS)在Twitter趋势提取中的有效性。此外,我们还研究了频繁短语法。我们的研究结果表明,JMTS显著优于频繁短语法和LDA,分别高出54%和24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信