Comparison of GANs for Covid-19 X-ray classification

Luiz Felipe Cavalcanti, Lilian Berton
{"title":"Comparison of GANs for Covid-19 X-ray classification","authors":"Luiz Felipe Cavalcanti, Lilian Berton","doi":"10.5753/eniac.2021.18238","DOIUrl":null,"url":null,"abstract":"Image classification has been applied to several real problems. However, getting labeled data is a costly task, since it demands time, resources and experts. Furthermore, some domains like disease detection suffer from unbalanced classes. These scenarios are challenging and degrade the performance of machine learning algorithms. In these cases, we can use Data Augmentation (DA) approaches to increase the number of labeled examples in a dataset. The objective of this work is to analyze the use of Generative Adversarial Networks (GANs) as DA, which are capable of synthesizing artificial data from the original data, under an adversarial process of two neural networks. The GANs are applied in the classification of unbalanced Covid-19 radiological images. Increasing the number of images led to better accuracy for all the GANs tested, especially in the multi-label dataset, mitigating the bias for unbalanced classes.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image classification has been applied to several real problems. However, getting labeled data is a costly task, since it demands time, resources and experts. Furthermore, some domains like disease detection suffer from unbalanced classes. These scenarios are challenging and degrade the performance of machine learning algorithms. In these cases, we can use Data Augmentation (DA) approaches to increase the number of labeled examples in a dataset. The objective of this work is to analyze the use of Generative Adversarial Networks (GANs) as DA, which are capable of synthesizing artificial data from the original data, under an adversarial process of two neural networks. The GANs are applied in the classification of unbalanced Covid-19 radiological images. Increasing the number of images led to better accuracy for all the GANs tested, especially in the multi-label dataset, mitigating the bias for unbalanced classes.
GANs对Covid-19 x线分类的比较
图像分类已经应用于几个实际问题。然而,获得标记数据是一项代价高昂的任务,因为它需要时间、资源和专家。此外,某些领域(如疾病检测)存在不平衡的类。这些场景是具有挑战性的,并且会降低机器学习算法的性能。在这些情况下,我们可以使用数据增强(DA)方法来增加数据集中标记示例的数量。本工作的目的是分析生成对抗网络(GANs)作为数据处理的使用,它能够在两个神经网络的对抗过程中从原始数据中合成人工数据。将gan应用于不平衡的Covid-19放射图像的分类。增加图像数量可以提高所有gan测试的准确性,特别是在多标签数据集中,减轻了不平衡类别的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信