Fingerprint Classification Based on Orientation Field

Z. H. Khazaal, S. S. Mahdi
{"title":"Fingerprint Classification Based on Orientation Field","authors":"Z. H. Khazaal, S. S. Mahdi","doi":"10.5121/ijesa.2018.8403","DOIUrl":null,"url":null,"abstract":"This paper introduces an effective method of fingerprint classification based on discriminative feature gathering from orientation field. A nonlinear support vector machines (SVMs) is adopted for the classification. The orientation field is estimated through a pixel-Wise gradient descent method and the percentage of directional block classes is estimated. These percentages are classified into four-dimensional vector considered as a good feature that can be combined with an accurate singular point to classify the fingerprint into one of five classes. This method shows high classification accuracy relative to other spatial domain classifiers.","PeriodicalId":425068,"journal":{"name":"International Journal of Embedded Systems and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijesa.2018.8403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces an effective method of fingerprint classification based on discriminative feature gathering from orientation field. A nonlinear support vector machines (SVMs) is adopted for the classification. The orientation field is estimated through a pixel-Wise gradient descent method and the percentage of directional block classes is estimated. These percentages are classified into four-dimensional vector considered as a good feature that can be combined with an accurate singular point to classify the fingerprint into one of five classes. This method shows high classification accuracy relative to other spatial domain classifiers.
基于方向场的指纹分类
介绍了一种基于方向场判别特征采集的有效指纹分类方法。采用非线性支持向量机(svm)进行分类。通过逐像素梯度下降法估计方向场,估计方向块类的百分比。这些百分比被分类为四维向量,被认为是一个很好的特征,可以与精确的奇点相结合,将指纹分为五类之一。与其他空间域分类器相比,该方法具有较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信