A new thermosetting resin prepared from a siloxane-containing benzoxazine and epoxy resin

Kai-Chi Chen, H. Li, Che-Hao Shih, Wen-Bin Chen, Shu-Chen Huang
{"title":"A new thermosetting resin prepared from a siloxane-containing benzoxazine and epoxy resin","authors":"Kai-Chi Chen, H. Li, Che-Hao Shih, Wen-Bin Chen, Shu-Chen Huang","doi":"10.1109/ESTC.2014.6962803","DOIUrl":null,"url":null,"abstract":"Copolymerization of PBZ precursors with epoxies forms network structures with high crosslinking densities, potentially improving the thermal and mechanical properties. In this study, we copolymerized the siloxane-imide-containing benzoxazine BZ-A6 was with siloxane-epoxy GT-1000. Analyses using differential scanning calorimetry and Fourier transform infrared spectroscopy revealed that the copolymers were formed at a relatively low curing temperature of 150 °C. The siloxane benzoxazine/epoxy mixture exhibited high thermal stability, with a high char yield of 44.6% and a high decomposition temperature of 364.9 °C. Moreover, during UV exposure tests, the water contact angle of the BZ-A6/GT-1000 copolymer was more stable than that of the conventional bisphenol A-type benzoxazine-epoxy Ba/DGEBA, suggesting that our new benzoxazine/epoxy mixture would be more suitable for applications requiring hydrophobic materials that are UV resistant. The low curing temperature and good temperature- and UV-resistance of this siloxane benzoxazine/epoxy mixture should make it widely applicable, such as IC package materials (film type encapsulant, paste encapsulant) or weather resistance application.","PeriodicalId":299981,"journal":{"name":"Proceedings of the 5th Electronics System-integration Technology Conference (ESTC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Electronics System-integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2014.6962803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Copolymerization of PBZ precursors with epoxies forms network structures with high crosslinking densities, potentially improving the thermal and mechanical properties. In this study, we copolymerized the siloxane-imide-containing benzoxazine BZ-A6 was with siloxane-epoxy GT-1000. Analyses using differential scanning calorimetry and Fourier transform infrared spectroscopy revealed that the copolymers were formed at a relatively low curing temperature of 150 °C. The siloxane benzoxazine/epoxy mixture exhibited high thermal stability, with a high char yield of 44.6% and a high decomposition temperature of 364.9 °C. Moreover, during UV exposure tests, the water contact angle of the BZ-A6/GT-1000 copolymer was more stable than that of the conventional bisphenol A-type benzoxazine-epoxy Ba/DGEBA, suggesting that our new benzoxazine/epoxy mixture would be more suitable for applications requiring hydrophobic materials that are UV resistant. The low curing temperature and good temperature- and UV-resistance of this siloxane benzoxazine/epoxy mixture should make it widely applicable, such as IC package materials (film type encapsulant, paste encapsulant) or weather resistance application.
一种由含硅氧烷的苯并恶嗪和环氧树脂制备的新型热固性树脂
PBZ 前体与环氧树脂共聚可形成具有高交联密度的网络结构,从而改善热性能和机械性能。在这项研究中,我们将含硅氧烷亚胺的苯并恶嗪 BZ-A6 与硅氧烷环氧树脂 GT-1000 进行了共聚。利用差示扫描量热法和傅立叶变换红外光谱进行的分析表明,共聚物是在相对较低的固化温度(150 ℃)下形成的。硅氧烷苯并恶嗪/环氧混合物具有很高的热稳定性,炭化率高达 44.6%,分解温度高达 364.9 ℃。此外,在紫外线曝晒测试中,BZ-A6/GT-1000 共聚物的水接触角比传统的双酚 A 型苯并恶嗪-环氧 Ba/DGEBA 更稳定,这表明我们的新型苯并恶嗪/环氧混合物更适用于需要抗紫外线的疏水材料的应用。这种硅氧烷苯并恶嗪/环氧混合物的固化温度低、耐温性和抗紫外线性能好,因此可广泛应用于集成电路封装材料(薄膜型封装材料、膏状封装材料)或耐候性应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信