On the development of a fuzzy model for nonlinear systems

J. Lai, J. Shieh, Y.-C. Lin
{"title":"On the development of a fuzzy model for nonlinear systems","authors":"J. Lai, J. Shieh, Y.-C. Lin","doi":"10.1109/IROS.1993.583260","DOIUrl":null,"url":null,"abstract":"The authors propose a fuzzy algorithm for modeling nonlinear physical systems. Each of the nonlinear coefficients in the system dynamic equation is modeled by a set of fuzzy rules. An identification algorithm incorporating a recursive least-squares method and an optimum search process is then used to optimize the parameters of the fuzzy rules. This ensures that all unknown fuzzy parameters can be predicted systematically. The feasibility of such an algorithm is demonstrated by two examples, a 2-link manipulator and a servovalve-controlled pneumatic chamber. Both computer simulation and experimental results show that the proposed fuzzy algorithm is very useful for modeling nonlinear systems, as the predicted system responses match the actual ones very well.","PeriodicalId":299306,"journal":{"name":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1993.583260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The authors propose a fuzzy algorithm for modeling nonlinear physical systems. Each of the nonlinear coefficients in the system dynamic equation is modeled by a set of fuzzy rules. An identification algorithm incorporating a recursive least-squares method and an optimum search process is then used to optimize the parameters of the fuzzy rules. This ensures that all unknown fuzzy parameters can be predicted systematically. The feasibility of such an algorithm is demonstrated by two examples, a 2-link manipulator and a servovalve-controlled pneumatic chamber. Both computer simulation and experimental results show that the proposed fuzzy algorithm is very useful for modeling nonlinear systems, as the predicted system responses match the actual ones very well.
非线性系统模糊模型的发展
提出了一种用于非线性物理系统建模的模糊算法。用一组模糊规则对系统动力学方程中的每个非线性系数进行建模。然后采用递推最小二乘法和最优搜索过程相结合的辨识算法对模糊规则的参数进行优化。这保证了系统地预测所有未知的模糊参数。通过两连杆机械手和伺服阀控制气室两个实例验证了该算法的可行性。计算机仿真和实验结果表明,所提出的模糊算法对非线性系统建模非常有用,预测的系统响应与实际系统响应吻合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信