Kai Huang, Iuliana Bacivarov, Fabian Hugelshofer, L. Thiele
{"title":"Scalably distributed SystemC simulation for embedded applications","authors":"Kai Huang, Iuliana Bacivarov, Fabian Hugelshofer, L. Thiele","doi":"10.1109/SIES.2008.4577715","DOIUrl":null,"url":null,"abstract":"SystemC becomes popular as an efficient system-level modelling language and simulation platform. However, the sole-thread simulation kernel obstacles its performance progress from the potential of modern multi-core machines. This is further aggravated by modern embedded applications that are getting more complex. In this paper, we propose a technique which supports the geographical distribution of an arbitrary number of SystemC simulations, without modifying the SystemC simulation kernel. This technique is suited to distribute functional and approximated-timed TLM simulation. We integrate this technique into a complete MPSoC design space exploration framework and the improvement gained is promising.","PeriodicalId":438401,"journal":{"name":"2008 International Symposium on Industrial Embedded Systems","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Industrial Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2008.4577715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
SystemC becomes popular as an efficient system-level modelling language and simulation platform. However, the sole-thread simulation kernel obstacles its performance progress from the potential of modern multi-core machines. This is further aggravated by modern embedded applications that are getting more complex. In this paper, we propose a technique which supports the geographical distribution of an arbitrary number of SystemC simulations, without modifying the SystemC simulation kernel. This technique is suited to distribute functional and approximated-timed TLM simulation. We integrate this technique into a complete MPSoC design space exploration framework and the improvement gained is promising.