Bivariate macromodeling with guaranteed uniform stability and passivity

S. Grivet-Talocia
{"title":"Bivariate macromodeling with guaranteed uniform stability and passivity","authors":"S. Grivet-Talocia","doi":"10.1109/EPEPS.2017.8329710","DOIUrl":null,"url":null,"abstract":"This paper extends the well-established macromodeling flows based on rational fitting and passivity enforcement to the bivariate case, where the model response depends on frequency and on some additional design parameter. We propose a black-box model identification algorithm that is able to guarantee uniform stability and passivity throughout the parameter range. The resulting models, which can be cast as parameterized SPICE subnetworks, may be used to construct parameterized component libraries for design optimization, what-if analyses and fast parametric sweeps in frequency or time domain.","PeriodicalId":397179,"journal":{"name":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2017.8329710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper extends the well-established macromodeling flows based on rational fitting and passivity enforcement to the bivariate case, where the model response depends on frequency and on some additional design parameter. We propose a black-box model identification algorithm that is able to guarantee uniform stability and passivity throughout the parameter range. The resulting models, which can be cast as parameterized SPICE subnetworks, may be used to construct parameterized component libraries for design optimization, what-if analyses and fast parametric sweeps in frequency or time domain.
保证均匀稳定性和无源性的二元宏观建模
本文将基于合理拟合和被动强化的已建立的宏观建模流程扩展到模型响应取决于频率和一些附加设计参数的二元情况。我们提出了一种能够在整个参数范围内保证均匀稳定性和无源性的黑箱模型识别算法。所得到的模型可以转换为参数化SPICE子网,可用于构建参数化组件库,用于设计优化、假设分析和频域或时域的快速参数扫描。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信