Automatic Clustering and Semantic Annotation for Dynamic IoT Sensor Data

Ching-Tzu Yu, Yu-Hui Zou, Hao-Yu Li, Szu-Yin Lin
{"title":"Automatic Clustering and Semantic Annotation for Dynamic IoT Sensor Data","authors":"Ching-Tzu Yu, Yu-Hui Zou, Hao-Yu Li, Szu-Yin Lin","doi":"10.1109/IC3.2018.00-30","DOIUrl":null,"url":null,"abstract":"In a dynamic IoT environment, distributed sensors are used to collect real-time data continually. However, it is difficult to transform the dynamic data into a machine-readable and machine-interpretable form. we propose a semantic annotation approach to annotate sensor data via semantics. Firstly, this approach builds an ontology based on Semantic Sensor Network Ontology (SSN Ontology) for dynamic IoT sensor data. Then, the new knowledge is collected from input data by using the K-Means clustering, and to update the semantic information into the base ontology. The updated ontology forms the basis for semantic annotation.","PeriodicalId":236366,"journal":{"name":"2018 1st International Cognitive Cities Conference (IC3)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 1st International Cognitive Cities Conference (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2018.00-30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a dynamic IoT environment, distributed sensors are used to collect real-time data continually. However, it is difficult to transform the dynamic data into a machine-readable and machine-interpretable form. we propose a semantic annotation approach to annotate sensor data via semantics. Firstly, this approach builds an ontology based on Semantic Sensor Network Ontology (SSN Ontology) for dynamic IoT sensor data. Then, the new knowledge is collected from input data by using the K-Means clustering, and to update the semantic information into the base ontology. The updated ontology forms the basis for semantic annotation.
动态物联网传感器数据的自动聚类和语义标注
在动态物联网环境中,分布式传感器用于持续收集实时数据。然而,将动态数据转换为机器可读和机器可解释的形式是很困难的。提出了一种语义标注方法,通过语义对传感器数据进行标注。首先,该方法建立了基于语义传感器网络本体(SSN ontology)的物联网动态传感器数据本体。然后,使用K-Means聚类方法从输入数据中收集新知识,并将语义信息更新到基本本体中。更新后的本体构成了语义标注的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信