Some characterizations of strongly π-regular rings

Mohammed Rashad AL-Kouri
{"title":"Some characterizations of strongly π-regular rings","authors":"Mohammed Rashad AL-Kouri","doi":"10.60037/edu.v1i2.1008","DOIUrl":null,"url":null,"abstract":"A ring R is said to be strongly π-regular if for every aR there exist a positive integers n, bR such that an = an+1b.  In this paper it has been proved that an abalian ring R is strongly π-regular if and only the set of all nilpotent element of R coincide with the Jacobson radical and R/J(R) is strongly-regular. In this study, some other characterizations of this kind of rings have been investigated and explored.","PeriodicalId":205934,"journal":{"name":"Journal of the faculty of Education","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the faculty of Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60037/edu.v1i2.1008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A ring R is said to be strongly π-regular if for every aR there exist a positive integers n, bR such that an = an+1b.  In this paper it has been proved that an abalian ring R is strongly π-regular if and only the set of all nilpotent element of R coincide with the Jacobson radical and R/J(R) is strongly-regular. In this study, some other characterizations of this kind of rings have been investigated and explored.
强π正则环的一些性质
如果对于每一个AR存在一个正整数n, bR,使得an = an+1b,我们就说环R是强π正则的。本文证明了一个abalian环R是强π正则的当且仅当R的所有幂零元素的集合与Jacobson根一致且R/J(R)是强正则的。在本研究中,对这类环的其他一些特征进行了研究和探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信